connhectSDK

Feb 24, 2023

DISCOVER

One SDK Eight Media Platforms 1
Beam Web Apps to the Big Screen 3
Beam Photos, Videos, Audio, and YouTube to the Big Screen 5
Mirror Screen and Camera Preview to the Big Screen 7
Promote Your TV App 9
5.1 Connect SDK OVEIVIEW v v vttt ittt e e e e e e e e e e 9
52 USECaSES . « v v v v v e e e e e e e e e e e 10
5.3 Supported features L L L e e e e e e e e e 11
54 Beamlcon e e e e 15
5.5 Sample APPS . - . o o i e e e 16
5.6 Testing & Debugging e 16
5.7 Download Connect SDK e e e e e 17
5.8 Getting Started e e e e e e e e e e e 18
5.9 Developer Guides L e 22
5.10 APIReferences o e e 46
5.11 Getting Started e e e e 251
5.12 Developer Guides L e e e e e e e e e e e 254
5.13 APIReferences v v i i e e e e e e e e e e e e 260
5.14 Getting Started L L e e e e e e e e e e 289
5.15 Developer Guides e 293
5.16 APIReferences v o i it e e e e e e e e e e e e e e 315
SA7 TV IWED APPS .« o o o o e 393
508 Release o e 397
509 Article e e 400
5.20 Terms and Conditions o ..o e e e e e e e e 403
521 Cookie Policy e 404
522 CONtaCt . . v v v v e 407

CHAPTER 1

One SDK Eight Media Platforms

Connect SDK is an open source framework that connects your mobile apps with multiple media device platforms.

https://connectsdk.readthedocs.io/en/latest/?badge=latest

connectSDK

2 Chapter 1. One SDK Eight Media Platforms

CHAPTER 2

Beam Web Apps to the Big Screen

Integrate Connect SDK into your mobile web app, and extend the viewing experience onto the big screen.

connectSDK

4 Chapter 2. Beam Web Apps to the Big Screen

CHAPTER 3

Beam Photos, Videos, Audio, and YouTube to the Big Screen

Integrate Connect SDK into your mobile app to beam media across multiple platforms onto the big screen.

connectSDK

6 Chapter 3. Beam Photos, Videos, Audio, and YouTube to the Big Screen

CHAPTER 4

Mirror Screen and Camera Preview to the Big Screen

Integrate Connect SDK into your mobile app on Android and iOS platforms for screen mirroring and remote camera,
which mirrors the screen and camera preview onto the big screen.

connectSDK

8 Chapter 4. Mirror Screen and Camera Preview to the Big Screen

CHAPTER B

Promote Your TV App

Now that you created a great TV app, promote it through your mobile app using Connect SDK.

5.1 Connect SDK Overview

Connect SDK is an open source framework that connects your mobile apps with multiple TV platforms. Because most
TV platforms support a variety of protocols, Connect SDK integrates and abstracts the discovery and connectivity
between all supported protocols.

To discover supported platforms and protocols, Connect SDK uses SSDP to discover services such as DIAL, DLNA,
UDAP, and Roku’s External Control Guide (ECG). Connect SDK also supports ZeroConf to discover devices such as
Chromecast and Apple TV. Even while supporting multiple discovery protocols, Connect SDK is able to generate one
unified list of discovered devices from the same network.

To communicate with discovered devices, Connect SDK integrates support for protocols such as DLNA, DIAL, SSAP,
ECG, AirPlay, Chromecast, UDAP, and webOS second screen protocol. Connect SDK intelligently picks which
protocol to use depending on the feature being used.

For example, when connecting to a 2013 LG Smart TV, Connect SDK uses DLNA for media playback, DIAL for
YouTube launching, and UDAP for system controls. On Roku, media playback and system controls are made avail-
able through ECG, and YouTube launching through DIAL. On Chromecast, media playback occurs through the Cast
protocol and YouTube is launched via DIAL.

To support the aforementioned use case without Connect SDK, a developer would need to implement DIAL, ECG,
Chromecast, and DLNA in their app. With Connect SDK, discovering the three devices is handled for you. Further-
more, the method calls between each protocol is abstracted. That means you can use one method call to beam a video
to Roku, 3 generations of LG Smart TVs, Apple TV, and Chromecast.

connectSDK

5.2 Use Cases

5.2.1 Web App Beaming

Using HTMLS and other web technologies, the capabilities and opportunity are nearly limitless.

Example: Chromecast apps, which are essentially web apps, are good examples of some possibilities of integrating
Connect SDK. Click here for a list of existing Chromecast apps .

Web App beaming is supported by Connect SDK v1.3 on webOS, Apple TV, and Chromecast.

5.2.2 Photo, Video & YouTube Beaming

Integrate Connect SDK into any mobile app that contains a photo, a video or YouTube video and give users the option
to beam and view their content on a larger, more social display for a more engaging experience.

Example: Trulia’s mobile app shows homes for sale. Instead of crowding over a screen or passing a phone around to
view the homes with friends and family, the user simply beams the photos directly to the Smart TV screen allowing
everyone in the room to share in the experience.

Example: The Verge app embeds product reviews, interviews and YouTube videos within their articles. With Connect
SDK integrated in the app, users could beam the content onto a Smart TV or TV set top box sharing content with
co-workers.

YouTube beaming is supported by Connect SDK v1.3 on webOS, LG Smart TV ‘13, LG Smart TV ‘12, Roku 3, Chrome-
cast, Fire TV, and many DIAL supporting devices. Photo and Video beaming is supported by Connect SDK vI1.3 on
webOS, LG Smart TV ‘13, LG Smart TV ‘12, Roku, Apple TV, and Chromecast.

5.2.3 Screen and Camera Preview Mirroring

Integrate Connect SDK into any mobile app and let users to mirror their screen and camera preview of the mobile
device on the TV for more valuable experience.

Screen Mirroring Example: The Movie Box app is a service that provides video on mobile. With Connect SDK
integrated in the app, the user experience can be expanded to a larger TV screen. This allows the app users to watch a
movie with their family on the large screen on their TV.

Remote Camera Example: Tom’s TV doesn’t have a built-in camera, so he can’t make video calls with the TV. By
streaming the camera to the TV with the Connect SDK, video calls can be made on the large TV without a built-in
camera or USB camera.

Screen Mirroring and Remote Camera are supported on LG Smart TV 22.

5.2.4 Promote Your TV App

If you are going to invest in building a TV app, promote its availability using your mobile app. Using Connect SDK,
your mobile app can detect if a specific device is on the same network and prompt the user to install your app. If
the user accepts, Connect SDK launches the device’s app store deep-linked to your specific app where the user can
complete the download and installation.

Example: Crunchyroll, a leading Japanese Anime and Asian media video service, has a channel on Roku. By inte-
grating Connect SDK, they could detect a Roku device on the same network and promote their channel’s availability
within their app.

This use case is supported by Connect SDK vi.3 on webOS, LG Smart TV ‘13, and Roku.

10 Chapter 5. Promote Your TV App

https://store.google.com/product/chromecast_apps

connectSDK

5.2.5 Control Your TV App

Own your user’s experience by allowing users to control the TV app using a mobile app. Everything from keyboard
input, app navigation, even logging-in can be made easier using your mobile app.

Example: Vudu could easily integrate keyboard and mouse control allowing their users to select videos and enter
credit card information using Vudu mobile app. Vudu could even pass user credentials from the mobile app to the TV
app eliminating the need to login on the TV if the user is already logged in on the mobile app.

5.2.6 Hybrid

Of course, developers can provide different experience depending on each platform. Some of the newer platforms like
webOS and Chromecast offer newer features

5.3 Supported features

The chart below shows which APIs are available for each device.

5.3.1 Connect SDK v1.6.0

To be updated

5.3. Supported features 11

connectSDK

Apps
Feature LG LG Chrome-| Ap- | Roku Fire | LG LG DIAL Sonos Xbox LG
Smart | Smart | cast ple TV | Smart | Smart Speake®ne| Music
we- we- & An- | TV TV TV Flow
bOS bOS droid 13 12 Speaket
22 ‘14 TV
Beam Yes Yes Yes Yes | No | No | No No No | No No | No
Web App
Launch Yes Yes Yes No | Yes | Yes | Yes. Yes. Yes | No No | No
My app Pair- Pair-
ing ing
is re- | is re-
quired | quired
Get list of | Yes Yes No No | Yes | No | Yes. Yes. No | No No | No
installed Pair- Pair-
apps ing ing
is re- | is re-
quired | quired
Mobile Yes Yes Yes Yes | No | No | No No No | No No | No
app to
TV app
messag-
ing
Deeplink | Yes Yes No No | Yes | No | Yes No No | No No | No
into app
store
Beam Yes Yes Yes No | Yes | Yes | Yes Yes Yes | No Yes | No
Youtube
Screen Yes No No No | No | No | No No No | No No | No
Mirroring
Remote Yes No No No | No | No | No No No | No No | No
Camera

12 Chapter 5. Promote Your TV App

connectSDK

Media

Feature | LG Chrome- | Ap- | Roku Fire | LG LG DIAL Sonos | Xbox| LG Mu-
Smart cast & | ple TV | Smart | Smart SpeakerOne | sic Flow
webOS | Android TV TV TV Speaker
‘14 TV 13 12

Beam Yes Yes Yes | Yes | Yes | Yes Yes No | No Yes | No

video

Beam Yes Yes Yes | Yes | Yes | Yes Yes No | Yes Yes | Yes

audio

Beam Yes Yes Yes | Yes | Yes | Yes Yes No | No Yes | No

photo

Media Yes Yes Yes | Yes | Yes | Yes Yes No | No Yes | No

pause

Media Yes Yes Yes | Yes | Yes | Yes Yes No | Yes Yes | Yes

stop

Get me- | Yes Yes Yes | No | Yes | Yes Yes No | Yes Yes | Yes

dia dura-

tion

Seek Yes Yes Yes | No | Yes | Yes Yes No | Yes Yes | Yes

media

Play Yes Yes No | No | Yes | Yes Yes No | Yes Yes | Yes

State

Sub-

scription

Get Me- | No Yes No | No | Yes | Yes Yes No | Yes Yes | Yes

dia Info

Media No Yes No | No | No | Yes Yes No | Yes Yes | Yes

Info Sub-

scription

SRT No No No | No | No | Yes Yes No | No No | No

subtitles

WebVTT | Yes Yes No | No | Yes | No No No | No No | No

subtitles

5.3. Supported features

13

connectSDK

System Controls

Fea- LG Chrome- | Ap- | Roku Fire | LG LG DIAL Sonos| Xbox| LG Mu-
ture Smart cast & | ple TV | Smart Smart SpeakerOne | sic Flow
webOS | Android TV TV 13 TV 12 Speaker
‘14 TV
Show | Yes. No No | No | No | No No No | No No | No
toast | Pair-
alert ing s
required
Key- Yes. No No | Yes | No | Yes. Yes. No | No No | No
board | Pair- Pair- Pair-
input | ing is ing is | ing s
required required | required
5-way | Yes. No No | Yes | No | Yes. Yes. No | No No | No
con- Pair- Pair- Pair-
trols ing s ing is | ing s
required required | required
Mouse | Yes. No No | No | No | Yes. Yes. No | No No | No
con- Pair- Pair- Pair-
trols ing s ing is | ing s
required required | required
Input Yes No No | No | No | Yes. Yes. No | No No | No
selec- Pair- Pair-
tor ing is | ing s
required | required
Power | Yes. No No | No | No | Yes. Yes. No | No No | No
off Pair- Pair- Pair-
de- ing s ing is | ing s
vice required required | required

14 Chapter 5. Promote Your TV App

connectSDK

TV Controls
Feature | LG Chrome- | Ap- | Roku Fire | LG LG DIAL Sonos| Xbox LG Mu-
Smart cast & | ple TV | Smart Smart SpeakerOne | sic Flow
webOS | Android TV TVH13 | TVH2 Speaker
‘14 TV
Volume | Yes Yes No | No | No | Yes. Yes. No | Yes Yes | Yes
up/down Pair- Pair-
ing is | ing is
required | required
Set vol- | Yes Yes No | No | No | No Yes. No | Yes Yes | Yes
ume Pair-
ing is
required
Tuner Yes. No No | No | No | Yes. Yes. No | No No | No
channel | Pair- Pair- Pair-
control | ing s ing is | ing is
required required | required
Volume | Yes Yes No | No | No | Yes. Yes. No | Yes Yes | Yes.
Sub- Pair- Pair- Pairing is
scrip- ing is | ing is required
tion required | required
Playlist
Fea- | LG Chrome- Ap- | Roku Fire | LG LG DIAL Sonos | Xbox| LG Music
ture Smart cast & | ple TV | Smart | Smart Speaker One | Flow
webOS | Android TV TVH3 | TV12 Speaker
‘14 TV
Beam | Yes No No | No | No | No No No | Yes No No
Playlist
Play Yes No No | No | No | No No No | Yes No | No
Next
Play Yes No No | No | No | No No No | Yes No | No
Previ-
ous
Jump | Yes No No | No | No | No No No | Yes No No
To
Track

5.4 Beam Icon

Connect SDK is about delivering a multi-device experience across multiple platforms. Our goal from the beginning
was to solve a fragmentation problem. Therefore, instead of creating another “beam” icon and expecting users to learn
one more visual artifact - we recommend you use one of the many great icons already available. Google’s Cast icon
is becoming widely recognized for this use case, so consider using it. Please make sure you comply with any rules set
forth by the icon creator.

5.4. Beam Icon 15

connectSDK

5.5 Sample Apps

API Sampler
— Android API Sampler
— Cordova API Sampler
— i0S API Sampler
* Media Sampler
— Android Media Sampler
— Cordova Media Sampler
— 10S Media Sampler
* Web App Sampler
— Android Web App Sampler
— Cordova Web App Sampler
— 10S Web App Sampler
* Screen Mirroring Sampler
— Android Screen Mirroring Sampler
— Android Dual Screen Sampler
— 10S Screen Mirroring Sampler
* Remote Camera Sampler
— Android Remote Camera Sampler

— i0S Remote Camera Sampler

5.6 Testing & Debugging

Due to the abstracted nature of Connect SDK, it may not be necessary for you to have a suite of test devices. For many
use cases, testing on one supported platform can be sufficient.

However, depending on your application and use case, it may be advisable to test each platform before you release
your application. For example, while video beaming is abstracted, each platform supports different video protocols
and you should make sure that your specific app’s video content is playable on your desired platform.

5.6.1 webOS

The webOS TV emulator is currently available through the LG developer portal, download here.

The emulator is limited in that it cannot download/install apps from LG Store. This will limit your testing on the
emulator to web app & media support. Note that the emulator’s network setting has to be set to “Bridged Adapter”
mode for the Emulator to be discoverable.

If you have need of production hardware, the line of LG Smart TVs with webOS are currently available from major
electronic retailers.

To test the Screen Mirroring or Remote Camera feature, we recommend you purchase the targeted device (webOS TV
22).

16 Chapter 5. Promote Your TV App

https://github.com/ConnectSDK/Connect-SDK-Android-API-Sampler
https://github.com/ConnectSDK/Connect-SDK-Cordova-API-Sampler
https://github.com/ConnectSDK/Connect-SDK-iOS-API-Sampler
https://github.com/ConnectSDK/Simple-Photo-Share-Android
https://github.com/ConnectSDK/Simple-Photo-Share-Cordova
https://github.com/ConnectSDK/Simple-Photo-Share-iOS
https://github.com/ConnectSDK/Web-App-Sampler-Android
https://github.com/ConnectSDK/Web-App-Sampler-Cordova
https://github.com/ConnectSDK/Web-App-Sampler-iOS
https://github.com/ConnectSDK/LGCast-Android-API-Sampler/tree/master/ScreenMirroring-Sampler
https://github.com/ConnectSDK/LGCast-Android-API-Sampler/tree/master/DualScreen-Sampler
https://github.com/ConnectSDK/LGCast-iOS-API-Sampler/tree/master/ScreenMirroring-Sampler
https://github.com/ConnectSDK/LGCast-Android-API-Sampler/tree/master/RemoteCamera-Sampler
https://github.com/ConnectSDK/LGCast-iOS-API-Sampler/tree/master/RemoteCamera-Sampler
https://webostv.developer.lge.com/develop/tools/emulator-installation

connectSDK

5.6.2 Chromecast

To test your application with a Chromecast device, you need to purchase a Chromecast dongle.

5.6.3 2012 and 2013 LG Smart TVs

To test your application with LG 2012 and 2013 Smart TVs, we recommend you purchase the targeted device. The
emulators available here are meant to be used exclusively for first-screen TV App development.

5.6.4 Roku

In order to test your application, you should purchase a Roku device. In general, Roku devices have the same features
across all models, however Roku 3 and Roku Streaming Stick have a larger app catalog, including support for YouTube
videos.

5.6.5 Fire TV

To test your application with Fire TV, you should purchase a Fire TV device.

5.6.6 Apple TV

To test your application with Apple TV, you should purchase an Apple TV device.

5.7 Download Connect SDK

Connect SDK is an open source framework licensed under the Apache License, Version 2.0.

5.7.1 Connect SDK v1.6.0
iOS

¢ Git: Connect-SDK-10S

* Getting Started: Serup Instructions | Discover and Connect to Device
Android

¢ Git: Connect-SDK-Android

* Getting Started: Serup Instructions | Discover & Connect to Device
Cordova

* Git: Connect-SDK-Cordova-Plugin

* Getting Started: Setup Instructions | Connect Your Cordova App

5.7. Download Connect SDK 17

https://webostv.developer.lge.com/more/netcast/sdk-overview
http://www.apache.org/licenses/LICENSE-2.0.html
https://github.com/ConnectSDK/Connect-SDK-iOS/tree/1.6.0
https://github.com/ConnectSDK/Connect-SDK-Android/tree/1.6.0
https://github.com/ConnectSDK/Connect-SDK-Cordova-Plugin/tree/1.6.0

connectSDK

5.8 Getting Started

5.8.1 Modularization
Structure

The Connect SDK repositories are adopting a modular approach with 1.4.0 release. Our aim is to provide flexibility to
the developers to be able pick and choose between the various devices. Currently you can choose whether to include
Google Cast and Fire TV devices or not. We plan to include more device options in the upcoming releases.

The Connect SDK is split into modules with the help of git submodules. There are two options:

1. The full project (Connect-SDK-iOS and Connect-SDK-Android) includes three submodules: core, google-cast, and
firetv and thus provides the full feature set. The latter submodules are located in the modules directory.

2. The lite project (Connect-SDK-iOS-Lite and Connect-SDK-Android-Lite) includes the core submodule only, there-
fore there is no need to download any third-party dependencies.

Please refer to the figure below displaying dependencies between different modules and libraries (for iOS and An-
droid).

Components with a light green background are external dependencies. The dashed lines show the submodule links,
whereas the solid lines depict build and/or runtime dependencies.

Standard setup
1

L L | google-cast Play services library
1
I
1
i
|
! v7 media router library
|
i
v l

1 1

core —> Java-Websocket v7 app compat library
A
1
1
1
1
1

lite

Lite setup

Fig. 1: Figure 1. Android SDK Component Diagram (showing Google Cast submodule as an example)

Links to the repositories are provided in the next table:

18 Chapter 5. Promote Your TV App

https://github.com/ConnectSDK
https://developers.google.com/cast/
https://developer.amazon.com/apps-and-games/fire-tv
https://git-scm.com/book/en/v2/Git-Tools-Submodules

connectSDK

Table 1: Table 1. Links to the repositories of Android

Module Link

full https://github.com/ConnectSDK/Connect-SDK- Android

lite https://github.com/ConnectSDK/Connect-SDK- Android-Lite

core https://github.com/ConnectSDK/Connect-SDK-Android-Core
google-cast | https://github.com/ConnectSDK/Connect-SDK-Android-Google-Cast
firetv https://github.com/ConnectSDK/Connect-SDK- Android-Fire TV

Usage instructions can be found in the full README or lite README.

Contributing

Since the source code is split between three repositories now (in the full version, whereas lite has only two), contribut-
ing is a bit more involved now. If you add a new feature across all the modules, you will have to create two GitHub
pull requests, one for each module. Our team will check the code and merge the changes into the submodules, then
update the full and lite repositories (as those just keep the project and track commits from the submodules). If you
have a simpler contributing workflow in mind, please let us know.

5.8.2 Setup Instructions

Dependencies

This project has the following dependencies, some of which require manual setup. If you would like to use a version
of the SDK which has no manual setup, consider using the lite version of the SDK. This project can be built in Android
Studio or directly with Gradle. Eclipse IDE is not supported since 1.5.0 version.

This project has the following dependencies.

* Connect-SDK-Android-Core submodule
— Requires Java-WebSocket library
— Requires jmDNS library

e Connect-SDK-Android-Google-Cast submodule
— Requires GoogleCast.framework

e Connect-SDK-Android-FireTV submodule
— Requires Amazon Fling SDK

Setup Connect SDK in Android Studio

Edit your project’s build.gradle to add this in the “dependencies” section.

allprojects {
repositories {
google ()
jcenter ()
maven { url "https://Jjitpack.io" }

(continues on next page)

5.8. Getting Started 19

https://github.com/ConnectSDK/Connect-SDK-Android
https://github.com/ConnectSDK/Connect-SDK-Android-Lite
https://github.com/ConnectSDK/Connect-SDK-Android-Core
https://github.com/ConnectSDK/Connect-SDK-Android-Google-Cast
https://github.com/ConnectSDK/Connect-SDK-Android-FireTV
https://github.com/ConnectSDK/Connect-SDK-iOS/blob/master/README.md
https://github.com/ConnectSDK/Connect-SDK-iOS-Lite/blob/master/README.md
mailto:developer@lge.com
https://github.com/ConnectSDK/Connect-SDK-Android-Lite
https://github.com/ConnectSDK/Connect-SDK-Android-Core
https://github.com/TooTallNate/Java-WebSocket
https://github.com/jmdns/jmdns
https://github.com/ConnectSDK/Connect-SDK-Android-Google-Cast
https://developers.google.com/cast
https://github.com/ConnectSDK/Connect-SDK-Android-FireTV

connectSDK

(continued from previous page)

/S

dependencies {

Y
implementation 'com.github.ConnectSDK:Connect-SDK-Android:master—-SNAPSHOT'

Setup Connect SDK in Android Studio from sources

1. Open your terminal and execute these commands
* cd your_project_folder
* git clone https://github.com/ConnectSDK/Connect-SDK-Android.git
¢ cd Connect-SDK-Android
e git submodule init
e git submodule update

2. On the root of your project directory create/modify the settings.gradle file. It should contain something like the
following:

include ':app', ':Connect-SDK-Android'

3. Edit your project’s build.gradle to add this in the “dependencies” section:

dependencies {
/...
implementation project (':Connect-SDK-Android')

}

4. Sync project with gradle files

5. Add permissions to your manifest

Permissions to include in manifest

* Required for SSDP & Chromecast/Zeroconf discovery
— android.permission.INTERNET
— android.permission.CHANGE_WIFI_MULTICAST_STATE
* Required for interacting with devices
— android.permission.ACCESS_NETWORK_STATE
— android.permission.ACCESS_WIFI_STATE
* Required for storing device pairing information
— android.permission.WRITE_EXTERNAL_STORAGE
* Required for Screen Mirroring and Remote Camera
— android.permission.RECORD_AUDIO

— android.permission.FOREGROUND_SERVICE

20 Chapter 5. Promote Your TV App

https://github.com/ConnectSDK/Connect-SDK-Android.git

connectSDK

— android.permission.CAMERA

<uses-permission android:name="android.permission.INTERNET"/>

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>
<uses-permission android:name="android.permission.ACCESS_WIFI_STATE"/>
<uses-permission android:name="android.permission.CHANGE_WIFI_MULTICAST_STATE"/>
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.RECORD_AUDIO" />
<uses-permission android:name="android.permission.FOREGROUND_SERVICE" />
<uses-permission android:name="android.permission.CAMERA" />

Metadata for application tag

This metadata tag is necessary to enable Chromecast support.

5.8.3 Discover & Connect to Device

Initial setup

Your view controller should implement delegate/listener methods for Connect SDK’s DevicePicker and Con-
nectableDevice classes. These methods will give you the ability to respond to device selection, ready, disconnect,
and error states.

public class MainActivity extends Activity implements ConnectableDevicelListener {

}

It is helpful to retain local references to both the DiscoveryManager and the ConnectableDevice objects. In most use
cases, these two classes will serve to provide most of the functionality required.

As soon as your app loads, you should instantiate the DiscoveryManager singleton and start discovery. As different
devices can take a wide range of time to be discovered, it is recommended that discovery start as soon as possible after
app launch.

private DiscoveryManager mDiscoveryManager;
private ConnectableDevice mDevice;

This can be initialized in the the Application class or in your Activity. You should always use getApplicationContext()
since the DiscoveryManager will likely hold onto this object longer than the life of a single Activity.

@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);

DiscoveryManager.init (getApplicationContext ());
// This step could even happen in your app's delegate

mDiscoveryManager = DiscoveryManager.getlInstance();
mDiscoveryManager.start () ;

Discovery & device selection

In many cases, your user will want to select one device from a list of many. You should present the DevicePicker to the
user to receive their selection. The DevicePicker includes a dynamic listing of all devices that have been discovered

5.8. Getting Started 21

connectSDK

on the network.

private void showImage () {
DevicePicker devicePicker = new DevicePicker (this);
AlertDialog dialog = devicePicker.getPickerDialog("Show Image", selectDevice);
dialog.show();

Once the user has selected a device, you should immediately register for events from that device and then call the
connect method.

AdapterView.OnlItemClickListener selectDevice = new AdapterView.OnlItemClickListener () {
@Override
public void onlItemClick (AdapterView<?> adapter, View parent, int position, long,,
—1id) {
mDevice = (ConnectableDevice) adapter.getItemAtPosition(position);
mDevice.addListener (devicelListener) ;
mDevice.connect () ;

Capability Filtering

If your app is making use of certain device capabilities (media playback/controls, web app launching, etc), it is strongly
recommended that you create filters with this information for DiscoveryManager.

Devices that are discovered & shown in the picker will be guaranteed to have the set of capabilities that you have
provided. This will prevent your users from selecting a device that has not yet acquired all of its protocols.

CapabilityFilter videoFilter = new CapabilityFilter (
MediaPlayer.Display_Video,
MediaControl.Any,
VolumeControl.Volume_Up_Down

)i

CapabilityFilter imageCapabilities = new CapabilityFilter (
MediaPlayer.Display_Image
)i

DiscoveryManager.getInstance () .setCapabilityFilters (videoFilter, imageCapabilities);

Check out the article on capabilities for more depth on this topic.

5.9 Developer Guides

5.9.1 Beam Media

A common use case with Connect SDK will be to beam a simple media file (image, video, audio) to a TV. The
following is a quick example of how you can beam an image onto a TV. This example is assuming that you have
discovered & connected to a device.

22 Chapter 5. Promote Your TV App

connectSDK

Beam an image file

String mediaURL = "http://www.connectsdk.com/files/9613/9656/8539/test_image.jpg"; //_
—credit: Blender Foundation/CC By 3.0

String iconURL = "http://www.connectsdk.com/files/2013/9656/8845/test_image_icon. jpg";
— // credit: sintel-durian.deviantart.com

String title = "Sintel Character Design";

String description = "Blender Open Movie Project";

String mimeType = "image/jpeg";

MediaInfo mediaInfo = new MediaInfo.Builder (mediaURL, mimeType)
.setTitle(title)
.setDescription (description)
.setIcon (iconURL)
Jbuild();

// These variable should be class fields
// LaunchSession mLaunchSession;

// MediaControl mMediaControl;

// ConnectableDevice mDevice;

MediaPlayer.LaunchListener listener = new MediaPlayer.LaunchListener () {
@Override
public void onSuccess (MediaLaunchObject object) {
// save these object references to control media playback
mLaunchSession = object.launchSession;
mMediaControl = object.mediaControl;

// you will want to enable your media control UI elements here

@Override
public void onError (ServiceCommandError error) {
Log.d ("App Tag", "Display photo failure: " + error);

}i

mDevice.getMediaPlayer () .displayImage (mediaInfo, listener);

Beam an audio/video file

String mediaURL = "http://www.connectsdk.com/files/8913/9657/0225/test_video.mpd"; //_
—credit: Blender Foundation/CC By 3.0

String iconURL = "http://www.connectsdk.com/files/2013/9656/8845/test_image_icon. jpg";
— // credit: sintel-durian.deviantart.com

String title = "Sintel Trailer";

String description = "Blender Open Movie Project";

String mimeType = "video/mp4"; // audio/+ for audio files

SubtitleInfo subtitles = null;
if (getTv () .hasCapability (MediaPlayer.Subtitle_ WebVTT)) {
subtitles = new SubtitleInfo.Builder ("http://ec2-54-201-108-205.us-west-2.
—compute.amazonaws.com/samples/media/sintel_en.vtt")
.setMimeType ("text/vtt")
.setLanguage ("en")
.setLabel ("English subtitles")

(continues on next page)

5.9. Developer Guides 23

connectSDK

(continued from previous page)

Jbuild();
}
MediaInfo mediaInfo = new MediaInfo.Builder (mediaURL, mimeType)
.setTitle (title)
.setDescription (description)
.setIcon (iconURL)
.setSubtitleInfo (subtitles)
Jouild();

// These variables should be class fields
// LaunchSession mLaunchSession;

// MediaControl mMediaControl;

// ConnectableDevice mDevice;

MediaPlayer.LaunchlListener listener = new MediaPlayer.LaunchListener () {
@Override
public void onSuccess (MediaLaunchObject object) {
// save these object references to control media playback
mLaunchSession = object.launchSession;
mMediaControl = object.mediaControl;

// you will want to enable your media control UI elements here

@Override
public void onError (ServiceCommandError error) {
Log.d ("App Tag", "Play media failure: " + error);

}i

mDevice.getMediaPlayer () .playMedia (mediaInfo, false, listener);

Control media playback

In the previous example, you will notice that the success block was called with a mediaControl object. In order to
control the media in the current playback session, you will need to store a reference to this mediaControl object and
call control methods on that object.

// pause media file
mMediaControl.pause (null) ;

// play media file
mMediaControl.play (null);

// seek to 10 seconds
mMediaControl.seek (10000L, null);

// close media file
mMediaControl.close (null);
// or

mDevice.getMediaPlayer () .closeMedia (mLaunchSession, null);

24 Chapter 5. Promote Your TV App

connectSDK

Beam a playlist

// These variables should be class fields
// LaunchSession mLaunchSession;

// MediaControl mMediaControl;

// PlaylistControl mPlaylistControl;

// ConnectableDevice mDevice;

MediaInfo mediaInfo = new MediaInfo.Builder ("your-playlist.m3u", "application/x—
—mpegurl")

.setTitle("Playlist")

.setDescription("Playlist description")

Louild();

mDevice.getMediaPlayer () .playMedia (mediaInfo, false, new MediaPlayer.LaunchListener ()
—{
@Override
public void onSuccess (MediaLaunchObject object) {
// save these object references to control media playback
mLaunchSession = object.launchSession;
mMediaControl = object.mediaControl;
// playlistControl can be null if it's not supported by a service
mPlaylistControl = object.playlistControl;
// you will want to enable your media control UI elements here

@Override
public void onError (ServiceCommandError error) {
Log.d ("App Tag", "Play playlist failure: " + error);

Control a playlist

// play previous track

mPlaylistControl.previous (null);

// play next track

mPlaylistControl.next (null);

// play a track specified by index (index starts from zero)
mPlaylistControl. jumpToTrack (0, null);

5.9.2 Beam Web Apps

There are several platforms available which support the launching of web apps. A web app is typically run on a
temporary basis in a full-screen browser instance.

Web App IDs

Both webOS and Chromecast platforms require a web app ID for API calls to launch & communicate with web apps.
This web app ID is translated it into your web app’s URL on web app launch.

For information on creating a web app ID for webOS, please visit the registration site.

To learn how to register for a Chromecast web app ID, visit Google’s app ID registration site.

5.9. Developer Guides 25

http://lgsvl.com/connectSDK/index.php
https://developers.google.com/cast/docs/registration

connectSDK

Launch web app with identifier

Connect SDK currently supports web app launching on webOS and Chromecast devices, which both translate a web
app identifier into your web app’s URL.

Communicating with web apps

Bi-directional communication with your web app is made extremely simple. Data can be sent and received as strongly-
typed data. For example, as a string or a keyed set of values (JSON object).

String webAppId = null;

// This variable should be a class field
// ConnectableDevice mDevice;

if (mDevice.getServiceByName ("webOS TV") != null)
webAppId = "5G7328DE";

else if (mDevice.getServiceByName ("Chromecast") != null)
webAppId = "3E5106AR";

else if (mDevice.getServiceByName ("AirPlay") != null)
webAppId = "http://www.example.com/";

if (webAppId == null)
return;

mDevice.getWebAppLauncher () .launchWebApp (webAppId, new WebAppSession.LaunchListener ()

—{
@Override
public void onError (ServiceCommandError error) {
Log.d("App Tag", "Failed to open web app: " + error);
}
@Override
public void onSuccess (WebAppSession object) {
Log.d("App Tag", "Web app launch success");
}
1)
String webAppId = "your_web_app";

// These variables should be class fields

// WebAppSession mWebAppSession;

// WebAppSessionListener mWebAppSessionListener;
// ConnectableDevice mDevice;

mDevice.getWebAppLauncher () .launchiWebApp (webAppId, new WebAppSession.LaunchListener ()

< {

@Override
public void onError (ServiceCommandError error) {
Log.d ("App Tag", "Failed to open web app: " + error);
}
@Override
public void onSuccess (WebAppSession object) {
Log.d ("App Tag", "Web app launch success");

(continues on next page)

26 Chapter 5. Promote Your TV App

connectSDK

(continued from previous page)

mWebAppSession = object;
mWebAppSession.setWebAppSessionlListener (mWebAppSessionListener);

mWebAppSession.connect (new Responselistener () {
@Override
public void onError (ServiceCommandError error) {
Log.d ("App Tag", "Failed to connect to web app: " + error);
}
@Override

public void onSuccess (Object object) {
Log.d ("App Tag", "Web app connect success");

After successfully establishing a connection, you can send messages to your web app.

mWebAppSession.sendMessage ("This is a test message", null);

You can also send an NSDictionary which will be received by the web app as a JSON object.

JSONObject message = null;
try {
message = new JSONObject () {{
put ("someParameter", "someValue");
put ("anArray", new JSONArray () {{
put ("array value 1");
put ("array value 2");
put ("array value 3");
PH) g
put ("anotherObject"”, new JSONObject () {{
put ("anotherParameter", "anothervValue");
PH) g
}Yi
} catch (JSONException e) {
e.printStackTrace();

mWebAppSession.sendMessage (message, null);

WebAppSessionDelegate allows you to receive messages from your web app.

Beam media to web app

A common use case for web apps is the playback and control of media files. Connect SDK provides capabilities
for directly playing/controlling media on a WebAppSession, provided that web app has integrated the Connect SDK
JavaScript Bridge.

Rather than calling playMedia on your device’s mediaPlayer, webAppSession provides its own mediaPlayer. After
media has been beamed into the web app, the control is just like any other media session.

5.9. Developer Guides 27

connectSDK

// These variable should be class fields
// LaunchSession mLaunchSession;

// MediaControl mMediaControl;

// WebAppSession mWebAppSession;

MediaPlayer.LaunchListener listener = new MediaPlayer.launchListener () {
@Override
public void onSuccess (MediaLaunchObject object) {
// save these object references to control media playback
mLaunchSession = object.launchSession;
mMediaControl = object.mediaControl;

// you will want to enable your media control UI elements here

@Override
public void onError (ServiceCommandError error) {
Log.d ("App Tag", "Display photo failure: " + error);

}i

String mediaURL = "http://www.connectsdk.com/files/9613/9656/8539/test_image.jpg"; //_
—credit: Blender Foundation/CC By 3.0

String iconURL = "http://www.connectsdk.com/files/2013/9656/8845/test_image_icon. jpg";
— // credit: sintel-durian.deviantart.com

String title = "Sintel Character Design";

String description = "Blender Open Movie Project";

String mimeType = "image/jpeg";

List imagelist = Arrays.asList (new ImageInfo (iconURL));

MediaInfo mediaInfo = new MediaInfo (mediaURL, mimeType, title, description,
—limagelist) ;

mWebAppSession.getMediaPlayer () .displayImage (mediaInfo, listener);

5.9.3 Launch Appon TV

Many TVs and streaming players include support for launching installed apps. The following is a simplified example
of how to launch YouTube on a device.

Launch an app

// This variable should be a class field
// ConnectableDevice mDevice;

mDevice.getLauncher () .launchApp ("YouTube", new Launcher.AppLaunchListener () {
@Override
public void onError (ServiceCommandError error) f{
Log.d ("App Tag", "App Launch error: " + error);
}
@Override

public void onSuccess (LaunchSession object) {

(continues on next page)

28 Chapter 5. Promote Your TV App

connectSDK

(continued from previous page)

Log.d ("App Tag", "App Launch success.");

Device-specific app identifiers
On each device (webOS TV, Roku, etc) apps are identified by different values. Here is an example of the different
identifiers in use for the YouTube app.

* webOS: youtube.leanback.v4 (value may change with future updates)

* Netcast: 0000000000017498 (value may be different on each TV)

* DIAL: YouTube (listed in DIAL registry)

* Roku: 837 (Roku-specific channel number)

Launching an app with device-specific identifiers

The following snippet shows how to detect the platform of your device and launch with the appropriate app identifier.

String appId = null;
// This should be a class field
// ConnectableDevice mDevice;

if (mDevice.getServiceByName (WebOSTVService.ID) != null)
applId = "youtube.leanback.v4";

else if (mDevice.getServiceByName (NetcastTVService.ID) != null)
appId = "0000000000017498";

else if (mDevice.getServiceByName (RokuService.ID) != null)
applId = "837";

else if (mDevice.getServiceByName (DIALService.ID) != null)
appId = "YouTube";

if (appId == null)

return;
mDevice.getLauncher () .launchApp (appId, new Launcher.AppLaunchListener () {
@Override
public void onError (ServiceCommandError error) {
Log.d ("App Tag", "App Launch error: " + error);
}
@Override

public void onSuccess (LaunchSession object) {
Log.d ("App Tag", "App Launch success.");

Applnfo helper object

You will notice that the previous example refers to an AppInfo object. This object is used internally by Connect SDK
to manage an app’s protocol-specific properties. If a device supports app list, the app list will return a set of Applnfo

5.9. Developer Guides 29

http://www.dial-multiscreen.org/dial-registry/namespace-database

connectSDK

objects for each app installed on the TV.

Launching an app with parameters

In most cases, a device’s launcher object will allow you to pass launch parameters to your app. Connect SDK has
normalized the parameter input type to a keyed set of values. These values are then parsed into the appropriate format
for the protocol (XML, JSON, URL params, etc).

// This should be a class field
// ConnectableDevice mDevice;

JSONObject params = null;
try {
params = new JSONObject () {{
put ("someProperty", "someValue");
Py
} catch (JSONException e) {
e.printStackTrace();

AppInfo appInfo = new AppInfo("your_ app_id");
mDevice.getLauncher () .launchAppWithInfo (appInfo, params, new Launcher.
—AppLaunchListener () {

@Override

public void onError (ServiceCommandError error) {
Log.d ("App Tag", "App Launch error: " + error);

}

@Override

public void onSuccess (LaunchSession object) {
Log.d ("App Tag", "App Launch success.");

Note: Due to the variety of protocols in use, it is strongly recommended that you only use strings for the keys AND
values of your parameters.

5.9.4 Discovery Manager

At the heart of Connect SDK is DiscoveryManager, a multi-protocol service discovery engine with a pluggable archi-
tecture. Much of your initial experience with Connect SDK will be with the DiscoveryManager class, as it consolidates
discovered service information into ConnectableDevice objects.

DiscoveryManager supports discovering services of differing protocols by using DiscoveryProviders. Many services
are discoverable over SSDP and are registered to be discovered with the SSDPDiscoveryProvider class.

As services are discovered on the network, the DiscoveryProviders will notify DiscoveryManager. DiscoveryManager
is capable of attributing multiple services, if applicable, to a single ConnectableDevice instance. Thus, it is possible to
have a mixed-mode ConnectableDevice object that is theoretically capable of more functionality than a single service
can provide.

DiscoveryManager keeps a running list of all discovered devices and maintains a filtered list of devices that have
satisfied any of your CapabilityFilters. This filtered list is used by the DevicePicker when presenting the user with a

30 Chapter 5. Promote Your TV App

connectSDK

list of devices.

Connect SDK device discovery can be started in one line.

DiscoveryManager.getInstance () .start ();

Features

Filtering devices by capability

It will be necessary in many cases to filter out devices that don’t support a desired feature-set. DiscoveryManager
provides the setCapabilityFilters method to provide for this ability.

Here is a simple example that discovers devices that support (video playback AND any media controls AND volume
up/down) OR (image display).

CapabilityFilter videoFilter = new CapabilityFilter (
MediaPlayer.Display_Video,
MediaControl.Any,
VolumeControl.Volume_ Up_Down

)i

CapabilityFilter imageCapabilities = new CapabilityFilter(
MediaPlayer.Display_Image

)

DiscoveryManager.getInstance () .setCapabilityFilters (videoFilter, imageCapabilities);

DeviceService registration

By default, Connect SDK is configured to discover all the services that it supports (webOS, Netcast, Chromecast,
DIAL, & Roku). It is possible to support only a subset of these services by manually registering those services before
starting DiscoveryManager for the first time.

DiscoveryManager.getInstance () .registerDeviceService (AirPlayService.class,
—ZeroconfDiscoveryProvider.class);
DiscoveryManager.getInstance () .registerDeviceService (CastService.class,

—CastDiscoveryProvider.class);
DiscoveryManager.getInstance () .registerDeviceService (DIALService.class,
—SSDPDiscoveryProvider.class

)

) 14
DiscoveryManager.getInstance () .registerDeviceService (RokuService.class,
—SSDPDiscoveryProvider.class);
DiscoveryManager.getInstance () .registerDeviceService (DLNAService.class,
—SSDPDiscoveryProvider.class); // LG TV devices only, includes NetcastTVService
DiscoveryManager.getInstance ()

)

—SSDPDiscoveryProvider.class

.registerDeviceService (WebOSTVService.class,

’

Pairing level

Connect SDK has support for pairing with certain devices. Having pairing disabled may reduce the number of sup-
ported capabilities that a ConnectableDevice has. Certain devices, although they may support the features you are
filtering for, may not pass your CapabilityFilter if pairing is disabled.

See the Supported Features list for information on what devices require pairing for certain capabilities.

5.9. Developer Guides 31

connectSDK

For the best user experience, Connect SDK has disabled pairing by default. Pairing can be enabled very easily, but it
must be enabled before DiscoveryManager is started for the first time.

DiscoveryManager.getInstance () .setPairinglevel (PairingLevel.ON) ;

Device store

When devices are connected to, there is certain information that is retained. This information is helpful for app re-
launches, pairing, remembering commonly-used devices, and more. Connect SDK provides a ConnectableDeviceStore
protocol to allow you to store ConnectableDevice information in a manner that suits your use case.

A default implementation, DefaultConnectableDeviceStore, will be used by DiscoveryManager if no other Con-
nectableDeviceStore is provided to DiscoveryManager when startDiscovery is called.

See also:
* DiscoveryManager
* CapabilityFilter
* PairingLevel

e ConnectableDeviceStore

5.9.5 Checking Capabilities
Setting up filters

When you are discovering devices you are able to specify multiple capability filters.

CapabilityFilter videoFilter =
new CapabilityFilter(
MediaPlayer.Display_Video,
MediaControl.Any,
VolumeControl.Volume_Up_Down) ;

CapabilityFilter imageFilter =
new CapabilityFilter(
MediaPlayer.Display_Image) ;

DiscoveryManager.getInstance () .setCapabilityFilters(videoFilter, imageFilter);

Any service that is found may meet the requirements of either filter but not both. When getting the Ul ready if a device
might have a capability you should always check before enabling that Ul component.

myImageButton.setEnabled (mDevice.hasCapability (MediaPlayer.Display_Image));

5.9.6 Resuming Apps

It may be necessary for your app to resume from a background or closed state and re-establish connection with a
previously connected device. There are many ways in which Connect SDK provides information to allow for this
behavior.

32 Chapter 5. Promote Your TV App

connectSDK

ConnectableDevice ID
Each ConnectableDevice has a unique ID assigned to it upon creation. When that device is connected to, the device

store saves information about each of the device’s services. The unique ID persists across app launches by attributing
service UUIDs to the unique device ID in the device store.

LaunchSession

The ability to interact with an app requires some information to persist, including a session ID. This session ID may
be required to close the app, as well as allow the app to accurately track certain state information.

WebAppSession

The ability to communicate with a web app requires a LaunchSession object and/or the web app id.

Resuming most recent connection

In order to save & reconnect to a previously connected device, all you need to keep track of is the device’s ID.
Assuming you are using the ConnectableDeviceStore included with Connect SDK, previously connected devices will
persist the same ID between app launches.

When your app restarts, you should immediately start discovery and listen for device found events from Discovery-
Manager. In these events, you can check each device’s ID and call connect on the previously connected device.

Important note about reconnecting
Just because your device has been discovered on the network doesn’t mean that all of its services/capabilities are

available. You will need to set a CapabilityFilter on DiscoveryManager or manually check the ConnectableDevice’s
capabilities before you call connect.

Save device ID to disk

ConnectableDevice device; // device you've connected to

SharedPreferences preferences = context.getSharedPreferences ("MyPreferences", Context.
—MODE_PRIVATE) ;
SharedPreferences.Editor editor = preferences.edit();

editor.putString ("recentDeviceId", device.getId());
editor.commit ();

Reconnect to device

ConnectableDevice mDevice;
String mRecentDevicelId;

@Override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);

(continues on next page)

5.9. Developer Guides 33

connectSDK

(continued from previous page)

SharedPreferences preferences = context.getSharedPreferences ("MyPreferences",
—Context .MODE_PRIVATE) ;
mRecentDeviceld = preferences.getString("recentDeviceId");

DiscoveryManager.getInstance () .setCapabilityFilters (myCapabilityFilters);

DiscoveryManager.getInstance () .addListener (this);
DiscoveryManager.getInstance () .start ();
}
@Override
public void onDeviceAdded (DiscoveryManager manager, ConnectableDevice device) {
if (mRecentDeviceId != null && mDevice == null) {
if (device.getId() .equalsIgnoreCase (mRecentDevicelId)) {
mDevice = device;

device.addListener (this);
device.connect () ;

Resuming a web app session

Resuming a web app session is as simple as saving the WebAppSession’s LaunchSession object before entering the
background. It can even be serialized into a JSON object for easy cross-platform storage.

Save session info to disk

WebAppSession webAppSession; // retrieved from WebAppLauncher launch success block

LaunchSession launchSession = webAppSession.launchSession;
JSONObject launchSessionInfo = launchSession.toJSONObject () ;

SharedPreferences preferences = context.getSharedPreferences ("MyPreferences", Context.
—MODE_PRIVATE) ;
SharedPreferences.Editor editor = preferences.edit();

editor.putString("launchSession", launchSessionInfo.toString());
editor.commit () ;

Re-create session after device is connected/ready

ConnectableDevice device; // device that has been re—-discovered & re—-connected
WebAppSession.LaunchListener joinWebAppListener;

SharedPreferences preferences = context.getSharedPreferences ("MyPreferences", Context.
—MODE_PRIVATE) ;

String launchSessionData = preferences.getString("launchSession");
JSONObject launchSessionInfo = null;

(continues on next page)

34 Chapter 5. Promote Your TV App

connectSDK

(continued from previous page)

try {
launchSessionInfo = new JSONObject (launchSessionData);
} catch (JSONException ex) {

if (launchSessionInfo != null) {
LaunchSession launchSession = LaunchSession.
—launchSessionFromJSONObject (launchSessionInfo);

device.getWebAppLauncher () . joinWebApp (launchSession, joinWebAppListener);

Low-effort re-connection option

Alternatively, you could re-join your web app with just the web app id. This could have the side effect of generating
new session information for your user, which may not be desired.

device.getWebAppLauncher () . joinWebApp ("your web app id", joinWebAppListener);

See also:
* Discover & Connect to Device
* Checking Capabilities
* Beam Web Apps

5.9.7 Screen Mirroring

With Connect SDK integrated in the mobile app, it can cast the screen and sound into the TV screen. This allows you
to extend the screen of a mobile app to a larger TV screen and share it with your family. This guide assumes that you
completed the setup described in the Serup Instructions.

There are two ways to display the screen to your TV.
* Screen mirroring: A way to dispay the entire app screen to the TV.

* Dual screen: A way to create a second screen of the app and display it on the TV while leaving the app screen
separate. Dual screen is provided as a screen mirroring function.

Note: This feature is only supported on webOS TV 22.

How to Use Screen Mirroring

To use screen mirroring, follow these steps.

1. Check the Android Version

Screen mirroring runs on Android version 10 (Q, API Level 29) and higher, so you need to check the OS version when
starting the app. If the OS version does not support the screen mirroring function, the function will not work or the
app will close.

5.9. Developer Guides 35

connectSDK

if (ScreenMirroringControl.isCompatibleOsVersion() == false) {
// The 0OS version is lower than Android 10
// and screen mirroring 1is not supported

2. Search Devices

Search for devices (TVs) connected to your home network. You can set the filter to only search for TVs that support
the screen mirroring function. Since the search for TVs takes some time, it should be started as soon as the app is
running.

// Initializes DiscoveryManager
DiscoveryManager.init (this);

// Sets a device search filter for devices that support screen mirroring (dual_,
—screen) .

ArrayList<String> capabilities = new ArrayList<>();
capabilities.add(ScreenMirroringControl.ScreenMirroring) ;

CapabilityFilter filter = new CapabilityFilter (capabilities);

// Searches devices
DiscoveryManager.getInstance () .setPairinglLevel (DiscoveryManager.PairingLevel.ON) ;
DiscoveryManager.getInstance () .setCapabilityFilters (filter);
DiscoveryManager.getInstance () .registerDeviceService (WebOSTVService.class,

s)

()

—SSDPDiscoveryProvider.class);

DiscoveryManager.getInstance () .start ();

3. Request Permissions

The screen mirroring requires the audio permission (android.permission.RECORD_AUDIO). The permission agree-
ment is executed only once on the first run or when there is no permission.

// Requests permissions
String[] permissions = new String|[] {Manifest.permission.RECORD_AUDIO};
ActivityCompat.requestPermissions (this, permissions, REQUEST_CODE_ACCESS_PERMISSIONS) ;

// Delivers request results to onRequestPermissionsResult
public void onRequestPermissionsResult (int requestCode, String[] permissions, int[]
—grantResults) {

super.onRequestPermissionsResult (requestCode, permissions, grantResults);

if (requestCode == REQUEST_CODE_ACCESS_PERMISSIONS) {
if (hasPermission () == true) {
// Succeeded to get permission
} else {
// Failed to get permission

// Checks the permissions
private boolean hasPermission () {

(continues on next page)

36 Chapter 5. Promote Your TV App

connectSDK

(continued from previous page)

return ActivityCompat.checkSelfPermission (this, Manifest.permission.RECORD_AUDIO)
—== PackageManager .PERMISSION_GRANTED;
}

4. Get User Approval for Screen Capture

User approval is required to capture the screen. Intent data must be delivered to the screen mirroring API when
consenting to screen capture.

// User approval is required to capture the screen

// Displays the system dialog for user approval

MediaProjectionManager projectionManager = (MediaProjectionManager)
—getSystemService (Context .MEDIA_ PROJECTION_SERVICE) ;

startActivityForResult (projectionManager.createScreenCapturelntent (), REQUEST_CODE_

—CAPTURE_CONSENT) ;

// Passes the user approval result to onActivityResult
public void onActivityResult (int requestCode, int resultCode, @Nullable Intent data) {
super.onActivityResult (requestCode, resultCode, data);

if (requestCode == REQUEST_CODE_CAPTURE_CONSENT) {
if (resultCode == Activity.RESULT_OK) {
// Succeed to get user approval
// Intent data must be saved and delivered to screen mirroring API
mProjectionData = data;
} else {
// User Approval Failed

5. Selecta TV

Select the TV to run the screen mirroring on by using the Picker. After selecting a TV, get a ScreenMirroringControl
object to use the screen mirroring APIL.

private ScreenMirroringControl mScreenMirroringControl;

AdapterView.OnlItemClickListener listener = (adapter, parent, position, id) —-> {
ConnectableDevice connectableDevice = (ConnectableDevice) adapter.
—getItemAtPosition (position);
mScreenMirroringControl = connectableDevice.getScreenMirroringControl ();

}i

// Displays a TV search picker dialog
AlertDialog dialog = new DevicePicker (this) .getPickerDialog(getString (R.string.dialog

—select_tv), listener);
dialog.show();

5.9. Developer Guides 37

connectSDK

6. Start Screen Mirroring

Now you can run the screen mirroring. Pairing is required when you connect to a TV for the first time, and the user is
informed about this.

The following runtime errors might occur while the screen mirroring is running.
* When the network connection is terminated
* When the TV is turned off
* When the screen mirroring is terminated on the TV
* When the mobile device’s notification terminates the screen mirroring
¢ When other exceptions occurred

For these errors, it is necessary to receive the error in real-time through the listener and respond appropriately.

ProgressDialog progress = new ProgressDialog(this);
progress.setMessage (getString (R.string.dialog_connecting_tv));
progress.show();

// Displays the pairing pop-up

AlertDialog pairingAlert = new AlertDialog.Builder (this)
.setTitle(getString(R.string.dialog_title_notice))
.setCancelable (false)
.setMessage (getString (R.string.dialog_allow_pairing))
.setNegativeButton (android.R.string.ok, null)
.create();

// Start the screen mirroring
// Each progress 1s passed through a callback function
mScreenMirroringControl.startScreenMirroring (this, mProjectionData, new,_
—ScreenMirroringStartListener () {

// When connecting to a TV for the first time, a pop-up about the mobile,,
—connection is displayed on the TV,

// and a pairing procedure is required once in which the user selects [OK] with,,
—~the remote control

// To do this, the app should display a pop-up with information about pairing

public void onPairing() {

pairingAlert.show();

// This 1is a callback function when the screen mirroring starts
// and whether or not it succeeds is passed through the result parameter
public void onStart (boolean result, Presentation secondScreen) {
updateButtonVisibility () ;
pairingAlert.dismiss ();
progress.dismiss();

if (result == true) Toast.makeText (ScreenMirroringActivity.this, getString(R.
—string.toast_start_completed), Toast.LENGTH_SHORT) .show();
else Toast.makeText (ScreenMirroringActivity.this, getString(R.string.toast_
—start_failed), Toast.LENGTH_SHORT) .show();
}
}) i

// This is a callback function when an unexpected error occurs while running the_
—Sscreen mirroring

(continues on next page)

38 Chapter 5. Promote Your TV App

connectSDK

(continued from previous page)

// An error occurs when the network 1is disconnected, or the TV is shut down, etc.
mScreenMirroringControl.setErrorListener (this, error —> {
// Error occurred

)i

7. Stop Screen Mirroring

When you want to stop mirroring, call stopScreenMirroring.

// Stops screen mirroring. Whether or not to stop normally is passed through the
—result parameter
// Abnormal termination is a case in which screen mirroring is stopped without,,
—running, etc.
mScreenMirroringControl.stopScreenMirroring (this, result —-> {

Toast.makeText (ScreenMirroringActivity.this, getString(R.string.toast_stopped),
—Toast.LENGTH_SHORT) .show () ;

updateButtonVisibility();
b

// Stops device search
DiscoveryManager.getInstance () .stop();
DiscoveryManager.destroy () ;

How to Use Dual Screen

Dual screen is a function that creates a second screen, separate from the app screen, and displays it on the TV. The
basic procedure is the same as with the screen mirroring above, and only the differences are explained below. When
mirroring starts, you just need to deliver the user-defined second screen class.

Define Second Screen

Inherit Android Presentation class to define a second screen class for dual screen.

public class SecondScreenDemo extends Presentation implements SnakeGameListener {
private Context mOuterContext;

public SecondScreenDemo (@NonNull Context outerContext, @NonNull Display display) {
super (outerContext, display);
mOuterContext = outerContext;

@Override

public void onCreate (@NonNull Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
super.setContentView (R.layout.snake_game_second_screen_layout);

5.9. Developer Guides 39

connectSDK

Start Dual Screen

Dual screen starts mirroring the screen by using the user-defined, Presentation inherited class. When the mobile device
is connected to the TV, it creates a virtual display for the second screen, creates an instance of the second screen class,
and passes it to the onStart callback. The user can then access the Second Screen class to control the dual screen.

mScreenMirroringControl.startScreenMirroring (this, projectionData, SecondScreenDemo.
—class, new ScreenMirroringControl.ScreenMirroringStartListener () {

// This is a callback function when screen mirroring starts
// and whether or not it succeeds is passed through the result parameter
public void onStart (boolean result, Presentation secondScreen) {
updateButtonVisibility();
pairingAlert.dismiss ();
progress.dismiss();

if (result == true) Toast.makeText (getBaseContext (), getString(R.string.toast__
—start_completed), Toast.LENGTH_SHORT) .show();

else Toast.makeText (getBaseContext (), getString(R.string.toast_start_failed)
—Toast .LENGTH_SHORT) .show () ;

[

if (secondScreen != null) {
mSecondScreenDemo = (SecondScreenDemo) secondScreen;
mSecondScreenDemo = mSecondScreenDemo.start () ;

5.9.8 Remote Camera

With Connect SDK integrated in the mobile app, it can display camera preview on the TV screen. This allows you to
use your mobile device’s camera as a remote camera for the TV that does not have an internal or USB camera. This
guide assumes that you completed the setup described in the Setup Instructions.

Note: This feature is only supported on webOS TV 22.

How to Use Remote Camera

To use a remote camera, follow the steps below.

1. Check the Android Version

The remote camera function is supported by Android 7 (N, API Level 24) and higher. When you run the app, check
the OS version to see if the remote camera is available. If the OS version does not support the remote camera function,
the function will not work or the app will close.

if (RemoteCameraApi.getInstance().isCompatibleOsVersion() == false) {
// The 0OS version is lower than Android 7
// and remote camera 1is not supported

40 Chapter 5. Promote Your TV App

connectSDK

2. Search Devices

Search for devices (TVs) connected to your home network. You can set the filter to only search for TVs that support
the remote camera function. Since the search for TVs takes some time, it should be started as soon as the app is
running.

// Initializes DiscoveryManager
DiscoveryManager.init (this);

// Sets a device search filter for devices that support remote camera
ArrayList<String> capabilities = new ArrayList<>();

capabilities.add (RemoteCameraControl.RemoteCamera) ;

CapabilityFilter filter = new CapabilityFilter (capabilities);

// Searches devices
DiscoveryManager.getInstance () .setPairinglevel (DiscoveryManager.PairingLevel.ON) ;
DiscoveryManager.getInstance () .setCapabilityFilters (filter);
DiscoveryManager.getInstance () .registerDeviceService (WebOSTVService.class,

s)

0

—SSDPDiscoveryProvider.class);

DiscoveryManager.getInstance () .start ();

3. Request Permissions

The remote camera function requires the camera permission (android.permission. CAMERA) and audio permission
(android.permission.RECORD_AUDIO). The user must grant these permissions when the remote camera is first exe-
cuted.

// Requests permissions

String[] permissions = new String[]{android.permission.CAMERA, Manifest.permission.
—RECORD_AUDIO};

ActivityCompat.requestPermissions (this, permissions, REQUEST_CODE_ACCESS_PERMISSIONS) ;

// Delivers request results to onRequestPermissionsResult
public void onRequestPermissionsResult (int requestCode, String[] permissions, int[]
—grantResults) {

super.onRequestPermissionsResult (requestCode, permissions, grantResults);

if (requestCode == REQUEST_CODE_ACCESS_PERMISSIONS) {
if (hasPermission () == true) {
// Succeeded to get permission
} else {
// Failed to get permission

// Checks the permissions
private boolean hasPermission() {
return ActivityCompat.checkSelfPermission (this, Manifest.permission.CAMERA) ==
—PackageManager .PERMISSION_GRANTED &&
ActivityCompat.checkSelfPermission (this, Manifest.permission.RECORD_AUDIO) ==
—PackageManager .PERMISSION_GRANTED;
}

5.9. Developer Guides 4

connectSDK

4, Selecta TV

Select the TV to run the remote camera on by using the Picker. After selecting a TV, get a RemoteCameraControl
object to use the remote camera API.

private RemoteCameraControl mRemoteCameraControl ;

AdapterView.OnItemClickListener listener = (adapter, parent, position, id) -> {
ConnectableDevice connectableDevice = (ConnectableDevice) adapter.
—getItemAtPosition (position);
mRemoteCameraControl = connectableDevice.getRemoteCameraControlControl ();

}i

// Displays a TV search picker dialog

AlertDialog dialog = new DevicePicker (this) .getPickerDialog(getString(R.string.dialog_
—select_tv), listener);

dialog.show () ;

5. Start Remote Camera

Now you can run the remote camera. First, create a SurfaceView component to show a camera preview, and then pass
its Surface as a parameter. If the preview is not needed, set the Surface to null. In addition, set initial values such as
the microphone mute settings or the camera lens direction and pass them as parameters. Pairing is required when you
connect to a TV for the first time, and the user is informed about it.

// Create a SurfaceView to display the camera preview
SurfaceView surfaceView = findViewById(R.id.surfaceView);
SurfaceHolder holder = surfaceView.getHolder ();

holder.addCallback (new SurfaceHolder.Callback () {
public void surfaceCreated(SurfaceHolder holder) {
// When the SurfaceView is created, pass it as an argument to request the_
—remote camera to start
startRemoteCamera (holder.getSurface());

)i

private void startRemoteCamera (Surface surface) {
AlertDialog pairingAlert = new AlertDialog.Builder (this)
.setTitle(getString(R.string.dialog_title_notice))
.setCancelable (false)
.setMessage (getString(R.string.dialog_allow_pairing))
.setNegativeButton (android.R.string.ok, null)
.create();

// Starts the remote camera
// Each progress is passed through a callback function
mRemoteCameraControl.startRemoteCamera (this, surface, mMicMute, mLensFacing, new_
—RemoteCameraStartListener () {
// When connecting to a TV for the first time, a pop-up about the mobile_
—connection is displayed on the TV,
// and a pairing procedure procedure 1s required once in which the user,
—selects [OK] with the remote control.

(continues on next page)

42 Chapter 5. Promote Your TV App

connectSDK

(continued from previous page)

// To do this, the app should display a pop-up with information about pairing
public void onPairing() {
pairingAlert.show () ;

// This 1is a callback function when the remote camera starts
// and whether or not it succeeds is passed through the result parameter
public void onStart (boolean result) ({

if (result == true) {
mPlayingAlert.show();
} else {

Toast.makeText (CameraPreviewActivity.this, getString(R.string.toast_
—start_failed), Toast.LENGTH_SHORT) .show();
finish();
}

pairingAlert.dismiss () ;

// Handles the callback when camera properties are changed on the TV
mRemoteCameraControl.setPropertyChangelListener (this, property —> {
Toast.makeText (this, getString(R.string.toast_property_changed) + ": " +
—property, Toast.LENGTH_SHORT) .show();
b

// This is a callback function when an unexpected error occurs while running the_

—remote camera
// An error occurs when the network is disconnected, the TV is shut down, etc.

mRemoteCameraControl.setErrorListener (this, error -> {
Toast .makeText (this, getString(R.string.toast_running_ error) + ": " + error,
—Toast.LENGTH_SHORT) .show () ;
mPlayingAlert.dismiss () ;
1)

6. Start Camera Playback

You can designate setCameraPlayingListener to receive a callback when camera stream transmission and playback
start by selecting the mobile device’s camera on the TV. When the camera playback starts on the TV, take appropriate

actions such as removing pop-ups.

// Handles the callback function when the remote camera preview screen starts by,
—selecting the mobile on the TV
mRemoteCameraControl.setCameraPlayingListener (this, () —> {

Toast.makeText (this, getString(R.string.toast_play_started), Toast.LENGTH_SHORT) .
—show () ;

mPlayingAlert.dismiss () ;
1)

7. Stop Remote Camera

When you want to stop the remote camera, call stopRemoteCamera.

5.9. Developer Guides 43

connectSDK

mRemoteCameraControl.stopRemoteCamera (this, result—>{

)i

Features

Change Camera Property

You can change camera properties such as brightness and AWB on the TV, and you can receive callbacks by designat-
ing a setPropertyChangeListener listener.

// Handles the callback function when changing camera properties on the TV
mRemoteCameraControl.setPropertyChangelistener (this, property —-> {

Toast.makeText (this, getString(R.string.toast_property_changed) + ": " + property,
< Toast.LENGTH_SHORT) .show () ;
1)

Handle Runtime Errors

The following runtime error might occur while the remote camera is running.
* When the network connection is terminated
¢ When the TV is turned off
* When the remote camera is terminated on the TV
* When the mobile device’s notification terminates the remote camera
* When other exceptions occurred

For these errors, it is necessary to receive the error in real-time through the listener and respond appropriately.

// This is a callback function when an unexpected error occurs while running a remote,
—camera
// An error occurs when the network connection is disconnected, the TV is shut down,

—etc.
mRemoteCameraControl.setErrorListener (this, error —-> ({
Toast.makeText (this, getString(R.string.toast_running_error) + ": " + error,

—Toast.LENGTH_SHORT) .show () ;
mPlayingAlert.dismiss ();
1)

Set the Microphone Mute State

If you change the microphone mute state, it must be transmitted. The app must maintain the current mute setting value.

mRemoteCameraControl.setMicMute (this, mMicMute); // true or false

Switch between Front and Back Cameras

When the direction of the camera is switched between front and rear, the camera direction is transmitted. The app
must maintain the current camera direction value.

44 Chapter 5. Promote Your TV App

connectSDK

mRemoteCameraControl.setlLensFacing (this, mLensFacing); // RemoteCameraApi.LENS_FACING.
—BACK or RemoteCameraApi.LENS_FACING_FRONT

5.9.9 FAQ

When do | start the DiscoveryManager?
We recommend starting the DiscoveryManager when the app is started so that devices can be discovered and ready for
use by the time the Ul is loaded.

If you need to start the discovery later or only during a specific activity within your app you should be aware that it
can take a few seconds for devices to be discovered.

How do | reconnect to a device on resume?

When your app goes into the background you can hold onto a ConnectableDevice object. When your app resumes
you have the reference to the ConnectableDevice and you can listen for the Device ready function. Once the device is
ready you can call connect and begin using it again.

How do | re-connect to a Web App when app resumes?

When a WebApp is launched on a TV you get a reference to that WebApp’s WebAppSession object. When your
phone’s application goes into the background you can hold onto that WebAppSession object for the next time your
application is in the foreground. Once your app is in the foreground again and you get a ConnectableDevice object.

public void onDeviceReady (ConnectableDevice device);

Then once the method is called you can use the stored WebAppSession object to continue to send commands to the
running app.

How do | get the number of devices discovered?

When you start an app you should always assume that there are 0 devices discovered. Using the DiscovryManagerDel-
egate you will be notified whenever a new device is discovered and an existing device has been lost.

public void onDeviceAdded (DiscoveryManager manager, ConnectableDevice device);
public void onDeviceRemoved (DiscoveryManager manager, ConnectableDevice device);

When either of these methods are called you can reference the compatibleDevices property of the sharedManager to
get a complete list of devices that match your filters.

When there are no compatible devices your Ul should reflect this by hiding the beam icon.

How do | get an ADHoc list of devices?

When you specify your device filters you may have devices that don’t support every feature. If you are searching for
all devices that can either display an image or play a YouTube video then you want to show a list of all the devices that
can show an image.

To do this you will need to check that each device in the compatibleDevices array has the capabilities that you are
looking for.

5.9. Developer Guides 45

connectSDK

public List getImageDevices () {
List imageDevices = new ArrayList();

for (ConnectableDevice device : DiscoveryManager.getInstance().
—getCompatibleDevices () .values()) {
if (device.hasCapability (MediaPlayer.Display_Image))
imageDevices.add (device) ;

}

return imageDevices;

How do | show an image or video from my device?

All videos that are sent with the Connect SDK are links to external web content and your device is no different. You
can setup a quick HTTP server and pass the url of your phone with connect SDK. The media player will reach to your
HTTP server and stream your content right from there.

There are some pre-made libraries that already do the heavy lifting for you.

Checkout: NanoHttpd

5.10 API References

5.10.1 Discovery
CapabilityFilter

com.connectsdk.discovery.CapabilityFilter

CapabilityFilter is an object that wraps a List of required capabilities. This CapabilityFilter is used for determining
which devices will appear in DiscoveryManager’s compatibleDevices array. The contents of a CapabilityFilter’s array
must be any of the string constants defined in the Capability Class constants.

CapabilityFilter values

Here are some examples of values for the Capability constants.

¢ MediaPlayer.Display_Video = “MediaPlayer.Display.Video”

* MediaPlayer.Display_Image = “MediaPlayer.Display.Image”

* VolumeControl.Volume_Subscribe = “VolumeControl.Subscribe”
¢ MediaControl.Any = “MediaControl. Any”

All Capability header files also define a constant array of all capabilities defined in that header (ex. kVolumeControl-
Capabilities).

AND/OR Filtering

CapabilityFilter is an AND filter. A ConnectableDevice would need to satisfy all conditions of a CapabilityFilter to
pass.

46 Chapter 5. Promote Your TV App

https://github.com/NanoHttpd/nanohttpd

connectSDK

The DiscoveryManager capabilityFilters is an OR filter. a ConnectableDevice only needs to satisfy one condition
(CapabilityFilter) to pass.

Examples

Filter for all devices that support video playback AND any media controls AND volume up/down.

List<String> capabilities = new ArrayList<String>();
capabilities.add(MediaPlayer.Display_Video);
capabilities.add (MediaControl.Any);
capabilities.add(VolumeControl.Volume_ Up_Down) ;

CapabilityFilter filter =
new CapabilityFilter (capabilities);
DiscoveryManager.getInstance () .setCapabilityFilters (filter);

Filter for all devices that support (video playback AND any media controls AND volume up/down) OR (image dis-
play).

CapabilityFilter videoFilter =
new CapabilityFilter(
MediaPlayer.Display_Video,
MediaControl.Any,
VolumeControl.Volume_ Up_Down) ;

CapabilityFilter imageFilter =
new CapabilityFilter(
MediaPlayer.Display_Image);

DiscoveryManager.getInstance () .setCapabilityFilters (videoFilter, imageFilter);

Properties

List<String> capabilities = new ArrayList<String>()

List of capabilities required by this filter. This property is readonly use the addCapability or addCapabili-
ties to build this object.

Methods

CapabilityFilter ()

Create an empty CapabilityFilter.
CapabilityFilter (String. .. capabilities)

Create a CapabilityFilter with the given array of required capabilities.

Parameters:

* capabilities — Capabilities to be added to the new filter

CapabilityFilter (List<String> capabilities)

Create a CapabilityFilter with the given array of required capabilities.

Parameters:

5.10. API References 47

connectSDK

* capabilities — List of capability names (see capability class files for String constants)
void addCapability (String capability)
Add a required capability to the filter.
Parameters:
* capability — Capability name to add (see capability class files for String constants)
void addCapabilities (List<String> capabilities)
Add array of required capabilities to the filter. (see capability class files for String constants)
Parameters:
* capabilities — List of capability names
void addCapabilities (String. .. capabilities)
Add array of required capabilities to the filter. (see capability classes files for String constants)
Parameters:

e capabilities — String[] of capability names

DevicePicker

com.connectsdk.device.DevicePicker

Overview

The DevicePicker is provided by the DiscoveryManager as a simple way for you to present a list of available devices
to your users.

In Depth

By calling the getPickerDialog you will get a reference to the AlertDialog that will be updated automatically updated
as compatible devices are discovered.

Methods

DevicePicker (Activity activity) Creates a new DevicePicker
Parameters:
* activity — Activity that DevicePicker will appear in
ListView getListView ()
void pickDevice (ConnectableDevice device) Sets a selected device.
Parameters:
¢ device — Device that has been selected.

void cancelPicker () Cancels pairing with the currently selected device.

48 Chapter 5. Promote Your TV App

connectSDK

AlertDialog getPickerDialog (String message, final OnltemClickListener listener) This method will return an
AlertDialog that contains a ListView with an item for each discovered ConnectableDevice.

Parameters:
» message — The title for the AlertDialog

* listener — The listener for the ListView to get the item that was clicked on

DiscoveryManager

com.connectsdk.discovery.DiscoveryManager

Overview

At the heart of Connect SDK is DiscoveryManager, a multi-protocol service discovery engine with a pluggable archi-
tecture. Much of your initial experience with Connect SDK will be with the DiscoveryManager class, as it consolidates
discovered service information into ConnectableDevice objects.

In depth

DiscoveryManager supports discovering services of differing protocols by using DiscoveryProviders. Many services
are discoverable over SSDP and are registered to be discovered with the SSDPDiscoveryProvider class.

As services are discovered on the network, the DiscoveryProviders will notify DiscoveryManager. DiscoveryManager
is capable of attributing multiple services, if applicable, to a single ConnectableDevice instance. Thus, it is possible to
have a mixed-mode ConnectableDevice object that is theoretically capable of more functionality than a single service
can provide.

DiscoveryManager keeps a running list of all discovered devices and maintains a filtered list of devices that have
satisfied any of your CapabilityFilters. This filtered list is used by the DevicePicker when presenting the user with a
list of devices.

Only one instance of the DiscoveryManager should be in memory at a time. To assist with this, DiscoveryManager
has static method at sharedManager.

Example:

DiscoveryManager.init (getApplicationContext ());

DiscoveryManager discoveryManager = DiscoveryManager.getInstance();
discoveryManager.addListener (this);

discoveryManager.start ();

Inner Classes

* PairingLevel

Methods

static void init (Context context) Initilizes the Discovery manager with a valid context. This should be done as soon
as possible and it should use getApplicationContext() as the Discovery manager could persist longer than the
current Activity.

5.10. API References 49

http://tools.ietf.org/html/draft-cai-ssdp-v1-03

connectSDK

DiscoveryManager.init (getApplicationContext ());

Parameters:
* context
static void destroy ()

static void init (Context context, ConnectableDeviceStore connectableDeviceStore) Initilizes the Discovery man-
ager with a valid context. This should be done as soon as possible and it should use getApplicationContext() as
the Discovery manager could persist longer than the current Activity.

This accepts a ConnectableDeviceStore to use instead of the default device store.

MyConnectableDeviceStore myDeviceStore = new MyConnectableDeviceStore();
DiscoveryManager.init (getApplicationContext (), myDeviceStore);

Parameters:
e context
¢ connectableDeviceStore
static DiscoveryManager getInstance () Get a shared instance of DiscoveryManager.

void addListener (DiscoveryManagerListener listener) Listener which should receive discovery updates. It is not
necessary to set this listener property unless you are implementing your own device picker. Connect SDK
provides a default DevicePicker which acts as a DiscoveryManagerListener, and should work for most cases.

If you have provided a capabilityFilters array, the listener will only receive update messages for ConnectableDe-
vices which satisfy at least one of the CapabilityFilters. If no capabilityFilters array is provided, the listener will
receive update messages for all ConnectableDevice objects that are discovered.

Parameters:
* listener — (optional) DiscoveryManagerListener with methods to be called on success or failure
void removeListener (DiscoveryManagerListener listener) Removes a previously added listener
Parameters:
* listener — (optional) DiscoveryManagerListener with methods to be called on success or failure
void setCapabilityFilters (CapabilityFilter... capabilityFilters) Parameters:
* capabilityFilters
void setCapabilityFilters (List<CapabilityFilter> capabilityFilters) Parameters:
e capabilityFilters
List<Capability Filter> getCapabilityFilters () Returns the list of capability filters.
boolean deviceIsCompatible (ConnectableDevice device) Parameters:
e device
void start () Start scanning for devices on the local network.
void stop () Stop scanning for devices.

void setConnectableDeviceStore (ConnectableDeviceStore connectableDeviceStore) ConnectableDeviceStore ob-
ject which loads & stores references to all discovered devices. Pairing codes/keys, SSL certificates, recent
access times, etc are kept in the device store.

50 Chapter 5. Promote Your TV App

connectSDK

ConnectableDeviceStore is a protocol which may be implemented as needed. A default implementation, De-
faultConnectableDeviceStore, exists for convenience and will be used if no other device store is provided.

In order to satisfy user privacy concerns, you should provide a UI element in your app which exposes the
ConnectableDeviceStore removeAll method.

To disable the ConnectableDeviceStore capabilities of Connect SDK, set this value to nil. This may be done at
the time of instantiation with Di scoveryManager.init (context, null);.

Parameters:
¢ connectableDeviceStore

ConnectableDeviceStore getConnectableDeviceStore () ConnectableDeviceStore object which loads & stores ref-
erences to all discovered devices. Pairing codes/keys, SSL certificates, recent access times, etc are kept in the
device store.

ConnectableDeviceStore is a protocol which may be implemented as needed. A default implementation, De-
faultConnectableDeviceStore, exists for convenience and will be used if no other device store is provided.

In order to satisfy user privacy concerns, you should provide a UI element in your app which exposes the
ConnectableDeviceStore removeAll method.

To disable the ConnectableDeviceStore capabilities of Connect SDK, set this value to nil. This may be done at
the time of instantiation with DiscoveryManager.init (context, null);.

Map<String, ConnectableDevice> getAllDevices () List of all devices discovered by DiscoveryManager. Each Con-
nectableDevice object is keyed against its current IP address.

Map<String, ConnectableDevice> getCompatibleDevices () Filtered list of discovered ConnectableDevices, lim-
ited to devices that match at least one of the CapabilityFilters in the capabilityFilters array. Each ConnectableDe-
vice object is keyed against its current IP address.

PairingLevel getPairingLevel () The pairingLevel property determines whether capabilities that require pairing (such
as entering a PIN) will be available.

If pairinglevel is set to ConnectableDevicePairingLevelOn, ConnectableDevices that require pairing will
prompt the user to pair when connecting to the ConnectableDevice.

If pairingLevel is set to ConnectableDevicePairingLevel Off (the default), connecting to the device will avoid
requiring pairing if possible but some capabilities may not be available.

void setPairingLevel (PairingLevel pairingLevel) The pairinglevel property determines whether capabilities that
require pairing (such as entering a PIN) will be available.

If pairingLevel is set to ConnectableDevicePairingLevelOn, ConnectableDevices that require pairing will
prompt the user to pair when connecting to the ConnectableDevice.

If pairinglevel is set to ConnectableDevicePairingLevelOff (the default), connecting to the device will avoid
requiring pairing if possible but some capabilities may not be available.

Parameters:

* pairinglLevel

Inherited Methods

void onDeviceReady (ConnectableDevice device) A ConnectableDevice sends out a ready message when all of its
connectable DeviceServices have been connected and are ready to receive commands.

Parameters:

¢ device — ConnectableDevice that is ready for commands.

5.10. API References 51

connectSDK

void onDeviceDisconnected (ConnectableDevice device) When all of a ConnectableDevice’s DeviceServices have
become disconnected, the disconnected message is sent.

Parameters:
¢ device — ConnectableDevice that has been disconnected.

void onPairingRequired (ConnectableDevice device, DeviceService service, PairingType pairingType)
DeviceService listener proxy method.

This method is called when a DeviceService tries to connect and finds out that it requires pairing information
from the user.

Parameters:
» device — ConnectableDevice containing the DeviceService
* service — DeviceService that requires pairing
* pairingType — DeviceServicePairingType that the DeviceService requires

void onCapabilityUpdated (ConnectableDevice device, List<String> added, List<String> removed) When a
ConnectableDevice finds & loses DeviceServices, that ConnectableDevice will experience a change in its
collective capabilities list. When such a change occurs, this message will be sent with arrays of capabilities that
were added & removed.

This message will allow you to decide when to stop/start interacting with a ConnectableDevice, based off of its
supported capabilities.

Parameters:
¢ device — ConnectableDevice that has experienced a change in capabilities
 added — List<String> of capabilities that are new to the ConnectableDevice
» removed — List<String> of capabilities that the ConnectableDevice has lost

void onConnectionFailed (ConnectableDevice device, ServiceCommandError error) This method is called when
the connection to the ConnectableDevice has failed.

Parameters:
¢ device — ConnectableDevice that has failed to connect
* error — ServiceCommandError with a description of the failure

void onServiceAdded (DiscoveryProvider provider, ServiceDescription serviceDescription) This method is called
when the DiscoveryProvider discovers a service that matches one of its DeviceService filters. The Ser-
viceDescription is created and passed to the listener (which should be the DiscoveryManager). The Ser-
viceDescription is used to create a DeviceService, which is then attached to a ConnectableDevice object.

Parameters:
* provider — DiscoveryProvider that found the service
* serviceDescription

void onServiceRemoved (DiscoveryProvider provider, ServiceDescription serviceDescription) This method is
called when the DiscoveryProvider’s internal mechanism loses reference to a service that matches one of its
DeviceService filters.

Parameters:
« provider — DiscoveryProvider that lost the service

e serviceDescription

52 Chapter 5. Promote Your TV App

connectSDK

void onServiceDiscoveryFailed (DiscoveryProvider provider, ServicecCommandError error) This method is
called on any error/failure within the DiscoveryProvider.

Parameters:
e provider — DiscoveryProvider that failed
* error — ServiceCommandError providing a information about the failure
void onServiceConfigUpdate (ServiceConfig serviceConfig) Parameters:

* serviceConfig

DiscoveryManagerListener

com.connectsdk.discovery.DiscoveryManagerListener

Overview

The DiscoveryManagerListener will receive events on the addition/removal/update of ConnectableDevice objects.

In Depth

It is important to note that, unless you are implementing your own device picker, this listener is not needed in your
code. Connect SDK’s DevicePicker internally acts a separate listener to the DiscoveryManager and handles all of the
same method calls.

Methods

void onDeviceAdded (DiscoveryManager manager, ConnectableDevice device) This method will be fired upon the
first discovery of one of a ConnectableDevice’s DeviceServices.

Parameters:
* manager — DiscoveryManager that found device
¢ device — ConnectableDevice that was found

void onDeviceUpdated (DiscoveryManager manager, ConnectableDevice device) This method is called when a
ConnectableDevice gains or loses a DeviceService in discovery.

Parameters:
* manager — DiscoveryManager that updated device
¢ device — ConnectableDevice that was updated

void onDeviceRemoved (DiscoveryManager manager, ConnectableDevice device) This method is called when
connections to all of a ConnectableDevice’s DeviceServices are lost. This will usually happen when a device is
powered off or loses internet connectivity.

Parameters:
* manager — DiscoveryManager that lost device

¢ device — ConnectableDevice that was lost

5.10. API References 53

connectSDK

void onDiscoveryFailed (DiscoveryManager manager, ServiceCommandError error) In the event of an error in the
discovery phase, this method will be called.

Parameters:
* manager — DiscoveryManager that experienced the error
e error — NSError with a description of the failure
PairingLevel
com.connectsdk.discovery.DiscoveryManager.PairingLevel

Describes a pairing level for a DeviceService. It’s used by a DiscoveryManager and all services.

Properties

OFF Specifies that pairing is off. DeviceService will never try to pair with a first screen device.

ON Specifies that pairing is on. DeviceService will try to pair if it is required by a first screen device.

PairingType

com.connectsdk.service.DeviceService.PairingType

Enumerates available pairing types. It is used by a DeviceService for implementing pairing strategy.

Properties

NONE DeviceService doesn’t require pairing
FIRST_SCREEN In this mode user must confirm pairing on the first screen device (e.g. an alert on a TV)
PIN_CODE In this mode user must enter a pin code from a mobile device and send it to the first screen device

MIXED In this mode user can either enter a pin code from a mobile device or confirm pairing on the TV

5.10.2 Device

ConnectableDevice
com.connectsdk.device.ConnectableDevice
Overview

ConnectableDevice serves as a normalization layer between your app and each of the device’s services. It consolidates
a lot of key data about the physical device and provides access to underlying functionality.

54 Chapter 5. Promote Your TV App

connectSDK

In Depth

ConnectableDevice consolidates some key information about the physical device, including model name, friendly
name, ip address, connected DeviceService names, etc. In some cases, it is not possible to accurately select which
DeviceService has the best friendly name, model name, etc. In these cases, the values of these properties are dependent
upon the order of DeviceService discovery.

To be informed of any ready/pairing/disconnect messages from each of the DeviceService, you must set a listener.

ConnectableDevice exposes capabilities that exist in the underlying DeviceServices such as TV Control, Media Player,
Media Control, Volume Control, etc. These capabilities, when accessed through the ConnectableDevice, will be
automatically chosen from the most suitable DeviceService by using that DeviceService’s CapabilityPriorityLevel.

Methods

void setPairingType (PairingType pairingType) set desirable pairing type for all services
Parameters:
e pairingType

void addService (DeviceService service) Adds a DeviceService to the ConnectableDevice instance. Only one in-
stance of each DeviceService type (webOS, Netcast, etc) may be attached to a single ConnectableDevice in-
stance. If a device contains your service type already, your service will not be added.

Parameters:
* service — DeviceService to be added
void removeService (DeviceService service) Removes a DeviceService from the ConnectableDevice instance.
Parameters:
e service — DeviceService to be removed
void removeServiceWithld (String serviceld) Removes a DeviceService from the ConnectableDevice instance.
Parameters:
¢ serviceld — ID of the DeviceService to be removed (DLNA, webOS TV, etc)

Collection<DeviceService> getServices () Array of all currently discovered DeviceServices this ConnectableDevice
has associated with it.

DeviceService getServiceByName (String serviceName) Obtains a service from the ConnectableDevice with the
provided serviceName

Parameters:
» serviceName — Service ID of the targeted DeviceService (webOS, Netcast, DLNA, etc)
Returns: DeviceService with the specified serviceName or nil, if none exists

void removeServiceByName (String serviceName) Removes a DeviceService form the ConnectableDevice in-
stance. serviceName is used as the identifier because only one instance of each DeviceService type may be
attached to a single ConnectableDevice instance.

Parameters:
¢ serviceName — Name of the DeviceService to be removed from the ConnectableDevice.

DeviceService getServiceWithUUID (String serviceUUID) Returns a DeviceService from the ConnectableDevice
instance. serviceUUID is used as the identifier because only one instance of each DeviceService type may be
attached to a single ConnectableDevice instance.

5.10. API References 55

connectSDK

Parameters:
¢ serviceUUID — UUID of the DeviceService to be returned

void addListener (ConnectableDeviceListener listener) Adds the ConnectableDeviceListener to the list of listeners
for this ConnectableDevice to receive certain events.

Parameters:
* listener — ConnectableDeviceListener to listen to device events (connect, disconnect, ready, etc)

void setListener (ConnectableDeviceListener listener) Clears the array of listeners and adds the provided
listener to the array. If 1istener is null, the array will be empty.

This method is deprecated. Since version 1.2.1, use ConnectableDevice: :addListener (ConnectableDevicelList
listener) instead

Parameters:
* listener — ConnectableDeviceListener to listen to device events (connect, disconnect, ready, etc)

void removeListener (ConnectableDeviceListener listener) Removes a previously added ConenctableDeviceLis-
tener from the list of listeners for this ConnectableDevice.

Parameters:
e listener — ConnectableDeviceListener to be removed
List<ConnectableDeviceListener> getListeners ()

void connect () Enumerates through all DeviceServices and attempts to connect to each of them. When all of a
ConnectableDevice’s DeviceServices are ready to receive commands, the ConnectableDevice will send a onDe-
viceReady message to its listener.

It is always necessary to call connect on a ConnectableDevice, even if it contains no connectable DeviceServices.
void disconnect () Enumerates through all DeviceServices and attempts to disconnect from each of them.

boolean isConnectable () Whether the device has any DeviceServices that require an active connection (websocket,
HTTP registration, etc)

void sendPairingKey (String pairingKey) Sends a pairing key to all discovered device services.
Parameters:
* pairingKey — Pairing key to send to services.

void cancelPairing () Explicitly cancels pairing on all services that require pairing. In some services, this will hide a
prompt that is displaying on the device.

List<String> getCapabilities () A combined list of all capabilities that are supported among the detected DeviceSer-
vices.

boolean hasCapability (String capability) Test to see if the capabilities array contains a given capability. See the
individual Capability classes for acceptable capability values.

It is possible to append a wildcard search term . Any to the end of the search term. This method will return true
for capabilities that match the term up to the wildcard.

Example: Launcher.App.Any
Parameters:

e capability — Capability to test against

56 Chapter 5. Promote Your TV App

connectSDK

boolean hasAnyCapability (String... capabilities) Test to see if the capabilities array contains at least one capabil-
ity in a given set of capabilities. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.
Parameters:
* capabilities — Array of capabilities to test against

boolean hasCapabilities (List<String> capabilities) Test to see if the capabilities array contains a given set of capa-
bilities. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.
Parameters:
e capabilities — Array of capabilities to test against

boolean hasCapabilities (String. .. capabilites) Test to see if the capabilities array contains a given set of capabili-
ties. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.
Parameters:
* capabilites — Array of capabilities to test against

Launcher getLauncher () Accessor for highest priority Launcher object This method is deprecated. Use
ConnectableDevice: :getCapability (Class<T> controllerClass) method instead

MediaPlayer getMediaPlayer () Accessor for highest priority MediaPlayer object This method is deprecated. Use
ConnectableDevice: :getCapability (Class<T> controllerClass) method instead

MediaControl getMediaControl () Accessor for highest priority MediaControl object This method is deprecated.
Use ConnectableDevice: :getCapability (Class<T> controllerClass) method instead

PlaylistControl getPlaylistControl () Accessor for highest priority PlaylistControl object This method is deprecated.
Use ConnectableDevice: :getCapability (Class<T> controllerClass) method instead

VolumeControl getVolumeControl () Accessor for highest priority VolumeControl object This method is deprecated.
Use ConnectableDevice: :getCapability (Class<T> controllerClass) method instead

WebAppLauncher getWebAppLauncher () Accessor for highest priority WebAppLauncher object This method
is deprecated. @ Use ConnectableDevice::getCapability (Class<T> controllerClass)
method instead

TVControl getTVControl () Accessor for highest priority TVControl object This method is deprecated. Use
ConnectableDevice: :getCapability (Class<T> controllerClass) method instead

ToastControl getToastControl () Accessor for highest priority ToastControl object This method is deprecated. Use
ConnectableDevice: :getCapability (Class<T> controllerClass) method instead

TextInputControl getTextInputControl () Accessor for highest priority TextInputControl object This method is dep-
recated. Use ConnectableDevice: :getCapability (Class<T> controllerClass) methodin-
stead

MouseControl getMouseControl () Accessor for highest priority MouseControl object This method is deprecated.
Use ConnectableDevice: :getCapability (Class<T> controllerClass) method instead

ExternallnputControl getExternallnputControl () Accessor for highest priority ExternallnputControl ob-
ject This method is deprecated. Use ConnectableDevice::getCapability (Class<T>
controllerClass) method instead

PowerControl getPowerControl () Accessor for highest priority PowerLauncher object This method is deprecated.
Use ConnectableDevice: :getCapability (Class<T> controllerClass) method instead

5.10. API References 57

connectSDK

KeyControl getKeyControl () Accessor for highest priority KeyControl object This method is deprecated. Use
ConnectableDevice: :getCapability (Class<T> controllerClass) method instead

void setIpAddress (String ipAddress) Sets the IP address of the ConnectableDevice.
Parameters:
* ipAddress — IP address of the ConnectableDevice
String getIpAddress () Gets the Current IP address of the ConnectableDevice.
void setFriendlyName (String friendlyName) Sets an estimate of the ConnectableDevice’s current friendly name.
Parameters:
¢ friendlyName — Friendly name of the device
String getFriendlyName () Gets an estimate of the ConnectableDevice’s current friendly name.

void setLastKnownIPAddress (String lastKnownIPAddress) Sets the last IP address this ConnectableDevice was
discovered at.

Parameters:
¢ JastKnownIPAddress — Last known IP address of the device & it’s services
String getLastKnownIPAddress () Gets the last IP address this ConnectableDevice was discovered at.

void setLastSeenOnWifi (String lastSeenOnWifi) Sets the name of the last wireless network this ConnectableDe-
vice was discovered on.

Parameters:
¢ lastSeenOnWifi — Last Wi-Fi network this device & it’s services were discovered on
String getLastSeenOnWifi () Gets the name of the last wireless network this ConnectableDevice was discovered on.

void setLastConnected (long lastConnected) Sets the last time (in milli seconds from 1970) that this Con-
nectableDevice was connected to.

Parameters:
¢ lastConnected — Last connected time

long getLastConnected () Gets the last time (in milli seconds from 1970) that this ConnectableDevice was connected
to.

void setLastDetection (long lastDetection) Sets the last time (in milli seconds from 1970) that this ConnectableDe-
vice was detected.

Parameters:
e lastDetection — Last detected time
long getLastDetection () Gets the last time (in milli seconds from 1970) that this ConnectableDevice was detected.
void setModelName (String modelName) Sets an estimate of the ConnectableDevice’s current model name.
Parameters:
¢ modelName — Model name of the ConnectableDevice
String getModelName () Gets an estimate of the ConnectableDevice’s current model name.
void setModelNumber (String modelNumber) Sets an estimate of the ConnectableDevice’s current model number.
Parameters:

¢ modelNumber — Model number of the ConnectableDevice

58 Chapter 5. Promote Your TV App

connectSDK

String getModelNumber () Gets an estimate of the ConnectableDevice’s current model number.

void setld (String id) Sets the universally unique id of this particular ConnectableDevice object. This is used inter-
nally in the SDK and should not be used.

Parameters:
¢ id — New id for the ConnectableDevice

String getld () Universally unique id of this particular ConnectableDevice object, persists between sessions in Con-
nectableDeviceStore for connected devices

public<T extends CapabilityMethods> T getCapability (Class<T> controllerClass) Get a capability with the
highest priority from a device. If device doesn’t have such capability then returns null.

Parameters:
« controllerClass — type of capability

Returns: capability implementation

Inherited Methods

void onConnectionRequired (DeviceService service) If the DeviceService requires an active connection (web-
socket, pairing, etc) this method will be called.

Parameters:
* service — DeviceService that requires connection

void onConnectionSuccess (DeviceService service) After the connection has been successfully established, and after
pairing (if applicable), this method will be called.

Parameters:
* service — DeviceService that was successfully connected

void onCapabilitiesUpdated (DeviceService service, List<String> added, List<String> removed) There are situa-
tions in which a DeviceService will update the capabilities it supports and propagate these changes to the De-
viceService. Such situations include:

* on discovery, DIALService will reach out to detect if certain apps are installed
* on discovery, certain DeviceServices need to reach out for version & region information

For more information on this particular method, see ConnectableDeviceDelegate’s connectableDe-
vice:capabilitiesAdded:removed: method.

Parameters:
* service — DeviceService that has experienced a change in capabilities
* added — List<String> of capabilities that are new to the DeviceService
» removed — List<String> of capabilities that the DeviceService has lost

void onDisconnect (DeviceService service, Error error) This method will be called on any disconnection. If error is
nil, then the connection was clean and likely triggered by the responsible DiscoveryProvider or by the user.

Parameters:
¢ service — DeviceService that disconnected

* error — Error with a description of any errors causing the disconnect. If this value is nil, then the disconnect
was clean/expected.

5.10. API References 59

connectSDK

void onConnectionFailure (DeviceService service, Error error) Will be called if the DeviceService fails to establish
a connection.

Parameters:
¢ service — DeviceService which has failed to connect
* error — Error with a description of the failure

void onPairingRequired (DeviceService service, PairingType pairingType, Object pairingData) 1f the DeviceSer-
vice requires pairing, valuable data will be passed to the delegate via this method.

Parameters:
* service — DeviceService that requires pairing
e pairingType — PairingType that the DeviceService requires
* pairingData — Any data that might be required for the pairing process, will usually be nil
void onPairingSuccess (DeviceService service)
Parameters:
* service
void onPairingFailed (DeviceService service, Error error) If there is any error in pairing, this method will be called.
Parameters:
* service — DeviceService that has failed to complete pairing

* error — Error with a description of the failure

ConnectableDevicelListener

com.connectsdk.device.ConnectableDeviceListener

ConnectableDeviceListener allows for a class to receive messages about ConnectableDevice connection, disconnect,
and update events.

It also serves as a proxy for message handling when connecting and pairing with each of a ConnectableDevice’s
DeviceServices. Each of the DeviceService proxy methods are optional and would only be useful in a few use cases.

* providing your own Ul for the pairing process.

* interacting directly and exclusively with a single type of DeviceService

Methods

void onDeviceReady (ConnectableDevice device) A ConnectableDevice sends out a ready message when all of its
connectable DeviceServices have been connected and are ready to receive commands.

Parameters:
* device — ConnectableDevice that is ready for commands.

void onDeviceDisconnected (ConnectableDevice device) When all of a ConnectableDevice’s DeviceServices have
become disconnected, the disconnected message is sent.

Parameters:

¢ device — ConnectableDevice that has been disconnected.

60 Chapter 5. Promote Your TV App

connectSDK

void onPairingRequired (ConnectableDevice device, DeviceService service, PairingType pairingType)
DeviceService listener proxy method.

This method is called when a DeviceService tries to connect and finds out that it requires pairing information
from the user.

Parameters:
* device — ConnectableDevice containing the DeviceService
* service — DeviceService that requires pairing
e pairingType — DeviceServicePairingType that the DeviceService requires

void onCapabilityUpdated (ConnectableDevice device, List<String> added, List<String> removed) When a
ConnectableDevice finds & loses DeviceServices, that ConnectableDevice will experience a change in its
collective capabilities list. When such a change occurs, this message will be sent with arrays of capabilities that
were added & removed.

This message will allow you to decide when to stop/start interacting with a ConnectableDevice, based off of its
supported capabilities.

Parameters:
» device — ConnectableDevice that has experienced a change in capabilities
 added — List<String> of capabilities that are new to the ConnectableDevice
» removed — List<String> of capabilities that the ConnectableDevice has lost

void onConnectionFailed (ConnectableDevice device, ServiceCommandError error) This method is called when
the connection to the ConnectableDevice has failed.

Parameters:
¢ device — ConnectableDevice that has failed to connect

* error — ServiceCommandError with a description of the failure

ServiceSubscription

com.connectsdk.service.command.ServiceSubscription

Methods

void unsubscribe ()
T addListener (T listener)
Parameters:
* listener — (optional) T with methods to be called on success or failure
void removeListener (T listener)
Parameters:
* listener — (optional) T with methods to be called on success or failure

List<T> getListeners ()

5.10. API References 61

connectSDK

5.10.3 Device Services

AirPlayService

com.connectsdk.service.AirPlayService

extends DeviceService

AirPlayService provides media playback/control & web app launching (iOS only) capabilities for Apple TV devices.
AirPlay-enabled speakers are not currently supported by Connect SDK.

Properties

final String X_APPLE_SESSION_ID = “X-Apple-Session-ID”
final String ID = “AirPlay”

Inner Classes

* PlaybackPositionListener

Methods

Capability PriorityLevel getPriorityLevel (Class<?extends CapabilityMethods > clazz) Parameters:
e clazz
AirPlayService (ServiceDescription serviceDescription, ServiceConfig serviceConfig) Parameters:
* serviceDescription
* serviceConfig
MediaControl getMediaControl () Get MediaControl implementation
Returns: MediaControl
Capability PriorityLevel getMediaControlCapabilityLevel () Get a capability priority for current implementation
Returns: CapabilityPriorityLevel
void play (ResponseListener <Object> listener) Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void pause (ResponseListener <Object> listener) Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void stop (ResponseListener <Object> listener) Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void rewind (ResponseListener <Object> listener) Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void fastForward (ResponseListener <Object> listener) Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

62 Chapter 5. Promote Your TV App

connectSDK

void previous (ResponseListener <Object> listener) This method is deprecated. Use
PlaylistControl::previous (ResponselListener<Object> listener) instead.

Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void next (ResponseListener <Object> listener) This method is deprecated. Use
PlaylistControl: :next (ResponselListener<Object> listener) instead.

Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void seek (long position, ResponseListener <Object> listener) Parameters:
* position — The new position, in milliseconds from the beginning of the stream
« listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getPosition (final :doc: PositionListener <and-positionlistener> listener) Parameters:
¢ listener — (optional) final PositionListener with methods to be called on success or failure

void getPlayState (final PlayStateListener listener) AirPlay has the same response for Buffering and Finished states
that’s why this method always returns Finished state for video which is not ready to play.

Parameters:
* listener — (optional) final PlayStateListener with methods to be called on success or failure
void getDuration (final DurationListener listener) Parameters:
* listener — (optional) final DurationListener with methods to be called on success or failure

ServiceSubscription <PlayStateListener> subscribePlayState (PlayStateListener listener) Subscribe for playback
state changes

Parameters:
* listener — receives play state notifications
Returns: ServiceSubscription<PlayStateListener>
MediaPlayer getMediaPlayer ()
CapabilityPriorityLevel getMediaPlayerCapabilityLevel ()
void getMedialnfo (MedialnfoListener listener) Parameters:
¢ listener — (optional) MedialnfoListener with methods to be called on success or failure
ServiceSubscription <MedialnfoListener> subscribeMedialnfo (MedialnfoListener listener) Parameters:
* listener — (optional) MedialnfoListener with methods to be called on success or failure

void displayImage (final String url, String mimeType, String title, String description, String iconSrc, final LaunchListener listene
Parameters:

e url

* mimeType
e title

e description
* iconSrc

* listener — (optional) final LaunchListener with methods to be called on success or failure

5.10. API References 63

connectSDK

void displayImage (Medialnfo medialnfo, LaunchListener listener) Parameters:
¢ medialnfo
* listener — (optional) LaunchListener with methods to be called on success or failure

void playVideo (final String url, String mimeType, String title, String description, String iconSrc, boolean shouldLoop, final Laun
Parameters:

e url

* mimeType

* title

e description

* iconSrc

* shouldLoop

* listener — (optional) final LaunchListener with methods to be called on success or failure

void playMedia (String url, String mimeType, String title, String description, String iconSrc, boolean shouldLoop, LaunchListene
This method is deprecated. Use MediaPlayer: :playMedia (MediaInfo mediaInfo, boolean
shouldLoop, LaunchListener listener) instead.

Parameters:
e url
* mimeType
o title
e description
e iconSrc
* shouldLoop
* listener — (optional) LaunchListener with methods to be called on success or failure
void playMedia (Medialnfo medialnfo, boolean shouldLoop, LaunchListener listener) Parameters:
* medialnfo
* shouldLoop
* listener — (optional) LaunchListener with methods to be called on success or failure
void closeMedia (LaunchSession launchSession, ResponseListener <Object> listener) Parameters:
* JaunchSession
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void sendCommand (final ServicecCommand<?> serviceCommand) Parameters:
 serviceCommand
void sendPairingKey (String pairingKey) Parameters:
¢ pairingKey
boolean isConnectable ()
boolean isConnected ()

void connect ()

64 Chapter 5. Promote Your TV App

connectSDK

void disconnect ()
void onLoseReachability (DeviceServiceReachability reachability) Parameters:
* reachability

static DiscoveryFilter discoveryFilter ()

Inherited Methods

void connect () Will attempt to connect to the DeviceService. The failure/success will be reported back to the De-
viceServiceListener. If the connection attempt reveals that pairing is required, the DeviceServiceListener will
also be notified in that event.

void disconnect () Will attempt to disconnect from the DeviceService. The failure/success will be reported back to
the DeviceServiceListener.

boolean isConnected () Whether the DeviceService is currently connected
boolean isConnectable ()

void cancelPairing () Explicitly cancels pairing in services that require pairing. In some services, this will hide a
prompt that is displaying on the device.

void sendPairingKey (String pairingKey) Will attempt to pair with the DeviceService with the provided pairing-
Data. The failure/success will be reported back to the DeviceServiceListener.

Parameters:

* pairingKey — Data to be used for pairing. The type of this parameter will vary depending on what type of
pairing is required, but is likely to be a string (pin code, pairing key, etc).

List<String> getCapabilities ()

boolean hasCapability (String capability) Test to see if the capabilities array contains a given capability. See the
individual Capability classes for acceptable capability values.

It is possible to append a wildcard search term . Any to the end of the search term. This method will return true
for capabilities that match the term up to the wildcard.

Example: Launcher.App.Any
Parameters:
e capability — Capability to test against

boolean hasAnyCapability (String... capabilities) Test to see if the capabilities array contains at least one capabil-
ity in a given set of capabilities. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.
Parameters:
e capabilities — Set of capabilities to test against

boolean hasCapabilities (List<String> capabilities) Test to see if the capabilities array contains a given set of capa-
bilities. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.
Parameters:

* capabilities — List of capabilities to test against

5.10. API References 65

connectSDK

ServiceDescription getServiceDescription ()

ServiceConfig getServiceConfig ()

JSONObject toJSONODbject ()

String getServiceName () Name of the DeviceService (webOS, Chromecast, etc)

void closeLaunchSession (LaunchSession launchSession, ResponseListener <Object> listener) Closes the ses-
sion on the first screen device. Depending on the sessionType, the associated service will have different ways of
handling the close functionality.

Parameters:
¢ launchSession — LaunchSession to close
* listener — (optional) listener to be called on success/failure
MediaPlayer getMediaPlayer ()
CapabilityPriorityLevel getMediaPlayerCapabilityLevel ()
void getMedialnfo (MedialnfoListener listener) Parameters:
¢ listener — (optional) MedialnfoListener with methods to be called on success or failure
ServiceSubscription <MedialnfoListener> subscribeMedialnfo (MedialnfoListener listener) Parameters:
* listener — (optional) MedialnfoListener with methods to be called on success or failure

void displayImage (Medialnfo medialnfo, LaunchListener listener) Display an image on the device. Not all de-
vices support all of the parameters — supply as many as you have available.

Related capabilities:
* MediaPlayer.Display.Image
e MediaPlayer.MediaData.Title
* MediaPlayer.MediaData.Description
* MediaPlayer.MediaData.Thumbnail
e MediaPlayer.MediaData.MimeType
Parameters:
» medialnfo — Object of Medialnfo class which includes all the information about an image to display.
* listener — (optional) LaunchListener with methods to be called on success or failure

void playMedia (Medialnfo medialnfo, boolean shouldLoop, LaunchListener listener) Play an audio or video file
on the device. Not all devices support all of the parameters — supply as many as you have available.

Related capabilities:
* MediaPlayer.Play.Video
* MediaPlayer.Play.Audio
* MediaPlayer.MediaData.Title
e MediaPlayer.MediaData.Description
e MediaPlayer.MediaData.Thumbnail
e MediaPlayer.MediaData.MimeType

Parameters:

66 Chapter 5. Promote Your TV App

connectSDK

» medialnfo — Object of Medialnfo class which includes all the information about an image to display.
* shouldLoop — Whether to automatically loop playback
* listener — (optional) LaunchListener with methods to be called on success or failure

void closeMedia (LaunchSession launchSession, ResponseListener <Object> listener) Close a running media ses-
sion. Because media is handled differently on different platforms, it is required to keep track of LaunchSession
and MediaControl objects to control that media session in the future. LaunchSession will be required to close
the media and mediaControl will be required to control the media.

Related capabilities:
e MediaPlayer.Close
Parameters:
* launchSession — LaunchSession object for use in closing media instance
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
MediaControl getMediaControl ()
Get MediaControl implementation
Returns: MediaControl
Capability PriorityLevel getMediaControlCapabilityLevel ()
Get a capability priority for current implementation
Returns: CapabilityPriorityLevel
void play (ResponseListener <Object> listener) Send play command.
Related capabilities:
* MediaControl.Play
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void pause (ResponseListener <Object> listener) Send pause command.
Related capabilities:
* MediaControl.Pause
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void stop (ResponseListener <Object> listener) Send play command.
Related capabilities:
e MediaControl.Stop
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void rewind (ResponseListener <Object> listener) Send rewind command.
Related capabilities:
¢ MediaControl.Rewind

Parameters:

5.10. API References 67

connectSDK

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void fastForward (ResponseListener <Object> listener) Send play command.
Related capabilities:
¢ MediaControl.FastForward
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void previous (ResponseListener <Object> listener) This method is deprecated. Use
PlaylistControl::previous (ResponselListener<Object> listener) instead.

Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void next (ResponseListener <Object> listener) This method is deprecated. Use
PlaylistControl: :next (ResponselListener<Object> listener) instead.

Parameters:
« listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void seek (long position, ResponseListener <Object> listener) Seeks to a new position within the current media
item

Related capabilities:

* MediaControl.Seek
Parameters:

e position — The new position, in milliseconds from the beginning of the stream

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void getDuration (DurationListener listener) Get the current media duration in milliseconds

Parameters:

* listener — (optional) DurationListener with methods to be called on success or failure

void getPosition (:doc: PositionListener <and-positionlistener> listener) Get the current playback position in mil-
liseconds

Parameters:
* listener — (optional) PositionListener with methods to be called on success or failure
void getPlayState (PlayStateListener listener) Get the current state of playback
Parameters:
* listener — (optional) PlayStateListener with methods to be called on success or failure

ServiceSubscription <PlayStateListener> subscribePlayState (PlayStateListener listener) Subscribe for playback
state changes

Parameters:
* listener — receives play state notifications
Returns: ServiceSubscription<PlayStateListener>
void onLoseReachability (DeviceServiceReachability reachability) Parameters:

e reachability

68 Chapter 5. Promote Your TV App

connectSDK

void unsubscribe (URLServiceSubscription<?> subscription) Parameters:
* subscription
void sendCommand (ServicecCommand<?> command) Parameters:

e command

CastService

com.connectsdk.service.CastService
extends DeviceService

CastService provides capabilities for Google Chromecast devices. CastService acts as a layer on top of Google’s own
Cast SDK, and requires the Cast SDK library to function. CastService provides the following functionality:

* Media playback

¢ Media control

e Web app launching & two-way communication
* Volume control

Using Connect SDK for discovery/control of Chromecast devices will result in your app complying with the Google
Cast SDK terms of service.

To learn more about Cast SDK, visit the Google Cast SDK Developer site.

Inner Classes

* ApplicationConnectionResultCallback
* CastListener

¢ ConnectionCallbacks

* ConnectionFailedListener

* ConnectionListener

* LaunchWebAppListener

Methods

CastService (ServiceDescription serviceDescription, ServiceConfig serviceConfig)
Parameters:
* serviceDescription
* serviceConfig
String getServiceName ()
Capability PriorityLevel getPriorityLevel (Class<?extends CapabilityMethods > clazz) Parameters:
e clazz
void connect ()

void disconnect ()

5.10. API References 69

https://developers.google.com/cast/docs/terms
https://developers.google.com/cast/

connectSDK

MediaControl getMediaControl () Get MediaControl implementation
Returns: MediaControl
Capability PriorityLevel getMediaControlCapabilityLevel () Get a capability priority for current implementation
Returns: CapabilityPriorityLevel
void play (final ResponseListener <Object> listener) Parameters:
* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void pause (final ResponseListener <Object> listener) Parameters:
* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void stop (final ResponseListener <Object> listener) Parameters:
« listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void rewind (ResponseListener <Object> listener) Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void fastForward (ResponseListener <Object> listener) Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void previous (ResponseListener <Object> listener) This method is deprecated. Use
PlaylistControl::previous (ResponselListener<Object> listener) instead.

Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void next (ResponseListener <Object> listener) This method is deprecated. Use
PlaylistControl: :next (ResponselListener<Object> listener) instead.

Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void seek (final long position, final ResponseListener <Object> listener) Parameters:

* position

« listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void getDuration (final DurationListener listener) Parameters:

e listener — (optional) final DurationListener with methods to be called on success or failure
void getPosition (final PositionListener listener) Parameters:

* listener — (optional) final PositionListener with methods to be called on success or failure
MediaPlayer getMediaPlayer ()
CapabilityPriorityLevel getMediaPlayerCapabilityLevel ()
void getMedialnfo (MedialnfoListener listener) Parameters:

* listener — (optional) MedialnfoListener with methods to be called on success or failure
ServiceSubscription <MedialnfoListener> subscribeMedialnfo (MedialnfoListener listener) Parameters:

¢ listener — (optional) MedialnfoListener with methods to be called on success or failure

70 Chapter 5. Promote Your TV App

connectSDK

void displayImage (String url, String mimeType, String title, String description, String iconSrc, LaunchListener listener)
This method is deprecated. Use MediaPlayer::displayImage (MediaInfo medialInfo,
LaunchListener listener) instead.

Parameters:
e url
* mimeType
o title
e description
* iconSrc
¢ listener — (optional) LaunchListener with methods to be called on success or failure
void displayImage (Medialnfo medialnfo, LaunchListener listener) Parameters:
* medialnfo
¢ listener — (optional) LaunchListener with methods to be called on success or failure

void playMedia (String url, String mimeType, String ftitle, String description, String iconSrc, boolean shouldLoop, LaunchListene
This method is deprecated. Use MediaPlayer: :playMedia (MediaInfo mediaInfo, boolean
shouldLoop, LaunchListener listener) instead.

Parameters:
e url
* mimeType
o title
¢ description
* iconSrc
¢ shouldLoop
* listener — (optional) LaunchListener with methods to be called on success or failure
void playMedia (Medialnfo medialnfo, boolean shouldLoop, LaunchListener listener) Parameters:
* medialnfo
¢ shouldLoop
¢ listener — (optional) LaunchListener with methods to be called on success or failure
void closeMedia (final LaunchSession launchSession, final ResponseListener <Object> listener) Parameters:
¢ launchSession
* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
WebAppLauncher getWebAppLauncher ()
CapabilityPriorityLevel getWebAppLauncherCapabilityLevel ()
void launchWebApp (String webAppld, WebAppSession.LaunchListener listener) Parameters:
* webAppld
* listener — (optional) WebAppSession.LaunchListener with methods to be called on success or failure

void launchWebApp (final String webAppld, final boolean relaunchIfRunning, final WebAppSession.LaunchListener listener)
Parameters:

5.10. API References 71

connectSDK

* webAppld
¢ relaunchIfRunning
* listener — (optional) final WebAppSession.LaunchListener with methods to be called on success or failure

void launchWebApp (String webAppld, JSONObject params, WebAppSession.LaunchListener listener)
Parameters:

* webAppld
* params
* listener — (optional) WebAppSession.LaunchListener with methods to be called on success or failure

void launchWebApp (String webAppld, JSONODbject params, boolean relaunchIlfRunning, WebAppSession.LaunchListener lister
Parameters:

* webAppld

* params

¢ relaunchIfRunning

* listener — (optional) WebAppSession.LaunchListener with methods to be called on success or failure
void requestStatus (final ResponseListener <Object> listener) Parameters:

* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void joinApplication (final ResponseListener <Object> listener) Parameters:

* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure

void joinWebApp (final LaunchSession webAppLaunchSession, final WebAppSession.LaunchListener listener)
Parameters:

* webAppLaunchSession

* listener — (optional) final WebAppSession.LaunchListener with methods to be called on success or failure
void joinWebApp (String webAppld, WebAppSession.LaunchListener listener) Parameters:

e webAppld

* listener — (optional) WebAppSession.LaunchListener with methods to be called on success or failure
void closeWebApp (LaunchSession launchSession, final ResponseListener <Object> listener) Parameters:

* launchSession

* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void pinWebApp (String webAppld, ResponseListener <Object> listener) Parameters:

* webAppld

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void unPinWebApp (String webAppld, ResponseListener <Object> listener) Parameters:

* webAppld

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void isWebAppPinned (String webAppld, WebAppPinStatusListener listener) Parameters:

* webAppld

* listener — (optional) WebAppPinStatusListener with methods to be called on success or failure

72 Chapter 5. Promote Your TV App

connectSDK

ServiceSubscription <WebAppPinStatusListener> subscribelsWebAppPinned (String webAppld, WebAppPinStatusListener listenei
Parameters:

* webAppld

* listener — (optional) WebAppPinStatusListener with methods to be called on success or failure
VolumeControl getVolumeControl ()
CapabilityPriorityLevel getVolumeControlCapabilityLevel ()
void volumeUp (final ResponseListener <Object> listener) Parameters:

* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void volumeDown (final ResponseListener <Object> listener) Parameters:

* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void setVolume (final float volume, final ResponseListener <Object> listener) Parameters:

* volume

* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void getVolume (VolumeListener listener) Parameters:

* listener — (optional) VolumeListener with methods to be called on success or failure
void setMute (final boolean isMute, final ResponseListener <Object> listener) Parameters:

* isMute

¢ listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void getMute (final MuteListener listener) Parameters:

¢ listener — (optional) final MuteListener with methods to be called on success or failure
ServiceSubscription <VolumeListener> subscribeVolume (VolumeListener listener) Parameters:

* listener — (optional) VolumeListener with methods to be called on success or failure
ServiceSubscription <MuteListener> subscribeMute (MuteListener listener) Parameters:

¢ listener — (optional) MuteListener with methods to be called on success or failure
void getPlayState (PlayStateListener listener) Get the current state of playback

Parameters:

* listener — (optional) PlayStateListener with methods to be called on success or failure
GoogleApiClient getApiClient ()
boolean isConnectable ()
boolean isConnected ()

ServiceSubscription <PlayStateListener> subscribePlayState (PlayStateListener listener) Subscribe for playback
state changes

Parameters:
* listener — receives play state notifications
Returns: ServiceSubscription<PlayStateListener>
void unsubscribe (URLServiceSubscription<?> subscription) Parameters:

e subscription

5.10. API References 73

connectSDK

List<URLServiceSubscription<?>> getSubscriptions ()

void setSubscriptions (List< URLServiceSubscription<?>> subscriptions) Parameters:
* subscriptions

static DiscoveryFilter discoveryFilter ()

static void setApplicationID (String id) Parameters:
e id

static String getApplicationID ()

Inherited Methods

void connect () Will attempt to connect to the DeviceService. The failure/success will be reported back to the De-
viceServiceListener. If the connection attempt reveals that pairing is required, the DeviceServiceListener will
also be notified in that event.

void disconnect () Will attempt to disconnect from the DeviceService. The failure/success will be reported back to
the DeviceServiceListener.

boolean isConnected () Whether the DeviceService is currently connected
boolean isConnectable ()

void cancelPairing () Explicitly cancels pairing in services that require pairing. In some services, this will hide a
prompt that is displaying on the device.

void sendPairingKey (String pairingKey) Will attempt to pair with the DeviceService with the provided pairing-
Data. The failure/success will be reported back to the DeviceServiceListener.

Parameters:

* pairingKey — Data to be used for pairing. The type of this parameter will vary depending on what type of
pairing is required, but is likely to be a string (pin code, pairing key, etc).

List<String> getCapabilities ()

boolean hasCapability (String capability) Test to see if the capabilities array contains a given capability. See the
individual Capability classes for acceptable capability values.

It is possible to append a wildcard search term . Any to the end of the search term. This method will return true
for capabilities that match the term up to the wildcard.

Example: Launcher.App.Any
Parameters:
e capability — Capability to test against

boolean hasAnyCapability (String... capabilities) Test to see if the capabilities array contains at least one capabil-
ity in a given set of capabilities. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.
Parameters:
e capabilities — Set of capabilities to test against

boolean hasCapabilities (List<String> capabilities) Test to see if the capabilities array contains a given set of capa-
bilities. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.

74 Chapter 5. Promote Your TV App

connectSDK

Parameters:
e capabilities — List of capabilities to test against
ServiceDescription getServiceDescription ()
ServiceConfig getServiceConfig ()
JSONObject toJSONObject ()
String getServiceName () Name of the DeviceService (webOS, Chromecast, etc)

void closeLaunchSession (LaunchSession launchSession, ResponseListener <Object> listener) Closes the ses-
sion on the first screen device. Depending on the sessionType, the associated service will have different ways of
handling the close functionality.

Parameters:
* JaunchSession — LaunchSession to close
* listener — (optional) listener to be called on success/failure
MediaPlayer getMediaPlayer ()
CapabilityPriorityLevel getMediaPlayerCapabilityLevel ()
void getMedialnfo (MedialnfoListener listener) Parameters:
* listener — (optional) MedialnfoListener with methods to be called on success or failure
ServiceSubscription <MedialnfoListener> subscribeMedialnfo (MedialnfoListener listener) Parameters:
* listener — (optional) MedialnfoListener with methods to be called on success or failure

void displayImage (Medialnfo medialnfo, LaunchListener listener) Display an image on the device. Not all de-
vices support all of the parameters — supply as many as you have available.

Related capabilities:
* MediaPlayer.Display.Image
e MediaPlayer.MediaData.Title
* MediaPlayer.MediaData.Description
* MediaPlayer.MediaData.Thumbnail
* MediaPlayer.MediaData.MimeType
Parameters:
* medialnfo — Object of Medialnfo class which includes all the information about an image to display.
* listener — (optional) LaunchListener with methods to be called on success or failure

void playMedia (Medialnfo medialnfo, boolean shouldLoop, LaunchListener listener) Play an audio or video file
on the device. Not all devices support all of the parameters — supply as many as you have available.

Related capabilities:
* MediaPlayer.Play.Video
e MediaPlayer.Play.Audio
e MediaPlayer.MediaData.Title
* MediaPlayer.MediaData.Description

¢ MediaPlayer.MediaData.Thumbnail

5.10. API References 75

connectSDK

e MediaPlayer.MediaData.MimeType
Parameters:
» medialnfo — Object of Medialnfo class which includes all the information about an image to display.
¢ shouldLoop — Whether to automatically loop playback
¢ listener — (optional) LaunchListener with methods to be called on success or failure

void closeMedia (LaunchSession launchSession, ResponseListener <Object> listener) Close a running media ses-
sion. Because media is handled differently on different platforms, it is required to keep track of LaunchSession
and MediaControl objects to control that media session in the future. LaunchSession will be required to close
the media and mediaControl will be required to control the media.

Related capabilities:
* MediaPlayer.Close
Parameters:
¢ launchSession — LaunchSession object for use in closing media instance
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
MediaControl getMediaControl () Get MediaControl implementation
Returns: MediaControl
CapabilityPriorityLevel getMediaControlCapabilityLevel () Get a capability priority for current implementation
Returns: CapabilityPriorityLevel
void play (ResponseListener <Object> listener) Send play command.
Related capabilities:
* MediaControl.Play
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void pause (ResponseListener <Object> listener) Send pause command.
Related capabilities:
¢ MediaControl.Pause
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void stop (ResponseListener <Object> listener) Send play command.
Related capabilities:
e MediaControl.Stop
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void rewind (ResponseListener <Object> listener) Send rewind command.
Related capabilities:
* MediaControl.Rewind

Parameters:

76 Chapter 5. Promote Your TV App

connectSDK

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void fastForward (ResponseListener <Object> listener) Send play command.
Related capabilities:
¢ MediaControl.FastForward
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void previous (ResponseListener <Object> listener) This method is deprecated. Use
PlaylistControl::previous (ResponselListener<Object> listener) instead.

Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void next (ResponseListener <Object> listener) This method is deprecated. Use
PlaylistControl: :next (ResponselListener<Object> listener) instead.

Parameters:
« listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void seek (long position, ResponseListener <Object> listener) Seeks to a new position within the current media
item

Related capabilities:
* MediaControl.Seek
Parameters:
e position — The new position, in milliseconds from the beginning of the stream
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getDuration (DurationListener listener) Get the current media duration in milliseconds
Parameters:
* listener — (optional) DurationListener with methods to be called on success or failure
void getPosition (PositionListener listener) Get the current playback position in milliseconds
Parameters:
* listener — (optional) PositionListener with methods to be called on success or failure
void getPlayState (PlayStateListener listener) Get the current state of playback
Parameters:
* listener — (optional) PlayStateListener with methods to be called on success or failure

ServiceSubscription <PlayStateListener> subscribePlayState (PlayStateListener listener) Subscribe for playback
state changes

Parameters:
* listener — receives play state notifications
Returns: ServiceSubscription<PlayStateListener>
VolumeControl getVolumeControl ()

CapabilityPriorityLevel getVolumeControlCapabilityLevel ()

5.10. API References 77

connectSDK

void volumeUp (ResponseListener <Object> listener) Sends the volume up command to the device.
Related capabilities:
¢ VolumeControl.UpDown
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void volumeDown (ResponseListener <Object> listener) Sends the volume down command to the device.
Related capabilities:
e VolumeControl.UpDown
Parameters:
« listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void setVolume (float volume, ResponseListener <Object> listener) Set the volume of the device.
Related capabilities:
* VolumeControl. Set
Parameters:
* volume — Volume as a float between 0.0 and 1.0
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getVolume (VolumeListener listener) Get the current volume of the device.
Related capabilities:
* VolumeControl.Get
Parameters:
* listener — (optional) VolumeListener with methods to be called on success or failure
void setMute (boolean isMute, ResponseListener <Object> listener) Set the current volume.
Related capabilities:
¢ VolumeControl.Mute.Set
Parameters:
e isMute
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getMute (MuteListener listener) Get the current mute state.
Related capabilities:
* VolumeControl.Mute.Get
Parameters:
* listener — (optional) MuteListener with methods to be called on success or failure

ServiceSubscription <VolumeListener> subscribeVolume (VolumeListener listener) Subscribe to the volume on the
TV.

Related capabilities:

e VolumeControl.Subscribe

78 Chapter 5. Promote Your TV App

connectSDK

Parameters:
¢ listener — (optional) VolumeListener with methods to be called on success or failure
ServiceSubscription <MuteListener> subscribeMute (MuteListener listener) Subscribe to the mute state on the TV.
Related capabilities:
* VolumeControl.Mute.Subscribe
Parameters:
* listener — (optional) MuteListener with methods to be called on success or failure
WebAppLauncher getWebAppLauncher ()
CapabilityPriorityLevel getWebAppLauncherCapabilityLevel ()
void launchWebApp (String webAppld, LaunchListener listener) Launch a web application on the TV.
Related capabilities:
* WebAppLauncher.Launch
* WebAppLauncher.Launch.Params —if launching with params
Parameters:
* webAppld — ID of web app assigned by platform vendor
¢ listener — (optional) LaunchListener with methods to be called on success or failure

void joinWebApp (LaunchSession webAppLaunchSession, LaunchListener listener) Join an active web app with-
out launching/relaunching. If the app is not running/joinable, the failure block will be called immediately.

Related capabilities:
* WebAppLauncher. Send
* WebAppLauncher.Receive
Parameters:
* webAppLaunchSession — LaunchSession for the web app to be joined
¢ listener — (optional) LaunchListener with methods to be called on success or failure

void closeWebApp (LaunchSession launchSession, ResponseListener <Object> listener) Closes a web app with
the provided LaunchSession.

Related capabilities:
* WebAppLauncher.Close
Parameters:
¢ launchSession — LaunchSession associated with the web app to be closed
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void pinWebApp (String webAppld, ResponseListener <Object> listener) Parameters:
* webAppld
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void unPinWebApp (String webAppld, ResponseListener <Object> listener) Parameters:
* webAppld

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

5.10. API References 79

connectSDK

void isWebAppPinned (String webAppld, WebApp PinStatusListener listener) Parameters:
* webAppld
* listener — (optional) WebAppPinStatusListener with methods to be called on success or failure

ServiceSubscription <WebAppPinStatusListener> subscribelsWebAppPinned (String webAppld, WebAppPinStatusListener listene
Parameters:

* webAppld

« listener — (optional) WebAppPinStatusListener with methods to be called on success or failure
void onLoseReachability (DeviceServiceReachability reachability) Parameters:

e reachability
void unsubscribe (URLServiceSubscription<?> subscription) Parameters:

e subscription
void sendCommand (ServicecCommand<?> command) Parameters:

e command

DIALService

com.connectsdk.service.DIALService
extends DeviceService

DIALService is a full implementation of the DIscover And Launch (DIAL) protocol specification. DIALService is
used to launch & close apps on DIAL-enabled devices. It can also be used to probe for an app’s existence on a
DIAL-enabled device. DIAL commands occur over HTTP.

See the DIAL protocol specification for more information.

Properties

final String ID = “DIAL”

Methods

static void registerApp (String appld) Registers an app ID to be checked upon discovery of this device. If the app
is found on the target device, the DIALService will gain the “Launcher.” capability, where is the value of the
appld parameter.

This method must be called before starting DiscoveryManager for the first time.
Parameters:
* appld - ID of the app to be checked for
static DiscoveryFilter discoveryFilter ()
DIALService (ServiceDescription serviceDescription, ServiceConfig serviceConfig) Parameters:
* serviceDescription
* serviceConfig

Capability PriorityLevel getPriorityLevel (Class<?extends CapabilityMethods > clazz) Parameters:

80 Chapter 5. Promote Your TV App

http://www.dial-multiscreen.org/dial-protocol-specification

connectSDK

* clazz
void setServiceDescription (ServiceDescription serviceDescription) Parameters:
* serviceDescription
Launcher getLauncher ()
CapabilityPriorityLevel getLauncherCapabilityLevel ()
void launchApp (String appld, AppLaunchListener listener) Parameters:
e appld
* listener — (optional) AppLaunchListener with methods to be called on success or failure
void launchAppWithInfo (AppInfo applInfo, AppLaunchListener listener) Parameters:
* applnfo
* listener — (optional) AppLaunchListener with methods to be called on success or failure

void launchAppWithInfo (final AppInfo appInfo, Object params, final AppLaunchListener listener)
Parameters:

* applnfo
* params
* listener — (optional) final AppLaunchListener with methods to be called on success or failure
void launchBrowser (String url, AppLaunchListener listener) Parameters:
e url
* listener — (optional) AppLaunchListener with methods to be called on success or failure
void closeApp (final LaunchSession launchSession, final ResponseListener <Object> listener) Parameters:
* JaunchSession
* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void launchYouTube (String contentld, AppLaunchListener listener) Parameters:
 contentld
* listener — (optional) AppLaunchListener with methods to be called on success or failure
void launchYouTube (String contentld, float startTime, AppLaunchListener listener) Parameters:
 contentld
e startTime
* listener — (optional) AppLaunchListener with methods to be called on success or failure
void launchHulu (String contentld, AppLaunchListener listener) Parameters:
* contentld
* listener — (optional) AppLaunchListener with methods to be called on success or failure

void launchNetflix (final String contentld, App LaunchListener listener) Parameters: - contentld - listener — (op-
tional) AppLaunchListener with methods to be called on success or failure

void launchAppStore (String appld, AppLaunchListener listener) Parameters:
e appld

* listener — (optional) AppLaunchListener with methods to be called on success or failure

5.10. API References 81

connectSDK

void getAppList (AppListListener listener) Parameters:
* listener — (optional) AppListListener with methods to be called on success or failure
void getRunningApp (AppInfoListener listener) Parameters:
* listener — (optional) AppInfoListener with methods to be called on success or failure
ServiceSubscription <ApplInfoListener> subscribeRunningApp (AppInfoListener listener) Parameters:
* listener — (optional) AppInfoListener with methods to be called on success or failure
void getAppState (LaunchSession launchSession, AppStateListener listener) Parameters:
¢ launchSession
* listener — (optional) AppStateListener with methods to be called on success or failure

ServiceSubscription <AppStateListener> subscribeAppState (LaunchSession launchSession, com.connectsdk.service.capability.Lq
Parameters:

¢ JaunchSession

e listener — (optional) com.connectsdk.service.capability.Launcher.AppStateListener with methods to be
called on success or failure

void closeLaunchSession (LaunchSession launchSession, ResponseListener <Object> listener) Parameters:
¢ launchSession
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
boolean isConnectable ()
boolean isConnected ()
void connect ()
void disconnect ()
void onLoseReachability (DeviceServiceReachability reachability) Parameters:
e reachability
void sendCommand (final ServicecCommand<?> mCommand) Parameters:

¢ mCommand

Inherited Methods

void connect () Will attempt to connect to the DeviceService. The failure/success will be reported back to the De-
viceServiceListener. If the connection attempt reveals that pairing is required, the DeviceServiceListener will
also be notified in that event.

void disconnect () Will attempt to disconnect from the DeviceService. The failure/success will be reported back to
the DeviceServiceListener.

boolean isConnected () Whether the DeviceService is currently connected
boolean isConnectable ()

void cancelPairing () Explicitly cancels pairing in services that require pairing. In some services, this will hide a
prompt that is displaying on the device.

82 Chapter 5. Promote Your TV App

connectSDK

void sendPairingKey (String pairingKey) Will attempt to pair with the DeviceService with the provided pairing-
Data. The failure/success will be reported back to the DeviceServiceListener.

Parameters:

* pairingKey — Data to be used for pairing. The type of this parameter will vary depending on what type of
pairing is required, but is likely to be a string (pin code, pairing key, etc).

List<String> getCapabilities ()

boolean hasCapability (String capability) Test to see if the capabilities array contains a given capability. See the
individual Capability classes for acceptable capability values.

It is possible to append a wildcard search term . Any to the end of the search term. This method will return true
for capabilities that match the term up to the wildcard.

Example: Launcher.App.Any
Parameters:
e capability — Capability to test against

boolean hasAnyCapability (String... capabilities) Test to see if the capabilities array contains at least one capabil-
ity in a given set of capabilities. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.
Parameters:
e capabilities — Set of capabilities to test against

boolean hasCapabilities (List<String> capabilities) Test to see if the capabilities array contains a given set of capa-
bilities. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.
Parameters:
* capabilities — List of capabilities to test against
ServiceDescription getServiceDescription ()
ServiceConfig getServiceConfig ()
JSONObject toJSONObject ()
String getServiceName () Name of the DeviceService (webOS, Chromecast, etc)

void closeLaunchSession (LaunchSession launchSession, ResponseListener <Object> listener) Closes the ses-
sion on the first screen device. Depending on the sessionType, the associated service will have different ways of
handling the close functionality.

Parameters:
¢ launchSession — LaunchSession to close
* listener — (optional) listener to be called on success/failure
Launcher getLauncher ()
CapabilityPriorityLevel getLauncherCapabilityLevel ()
void launchAppWithInfo (AppInfo appInfo, AppLaunchListener listener) Launch an application on the device.
Related capabilities:
¢ Launcher.App

e Launcher.App.Params —if launching with params

5.10. API References 83

connectSDK

Parameters:

 applnfo — Applnfo object for the application

* listener — (optional) AppLaunchListener with methods to be called on success or failure

void launchApp (String appld, AppLaunchListener listener) Launch an application on the device.

Related capabilities:

¢ Launcher.App
Parameters:

e appld — ID of the application

* listener — (optional) AppLaunchListener with methods to be called on success or failure

void closeApp (LaunchSession launchSession, ResponseListener <Object> listener) Close an application on the
device.

Related capabilities:
* Launcher.App.Close
Parameters:
¢ launchSession — LaunchSession of the target app
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getAppList (AppListListener listener) Gets a list of all apps installed on the device.
Related capabilities:
e Launcher.App.List
Parameters:
* listener — (optional) AppListListener with methods to be called on success or failure
void getRunningApp (AppInfoListener listener) Gets an Applnfo object for the current running app on the device.
Related capabilities:
* Launcher.RunningApp
Parameters:
* listener — (optional) AppInfoListener with methods to be called on success or failure

ServiceSubscription <ApplInfoListener> subscribeRunningApp (AppInfoListener listener) Subscribes to changes
of the current running app. Every time the running app changes, the success block will be called with an
Applnfo object for the current running app.

Related capabilities:
* Launcher.RunningApp.Subscribe
Parameters:
* listener — (optional) ApplInfoListener with methods to be called on success or failure

void getAppState (LaunchSession launchSession, AppStateListener listener) Gets the target app’s running status
and on-screen visibility.

Related capabilities:

e Launcher.AppState

84 Chapter 5. Promote Your TV App

connectSDK

Parameters:
* JlaunchSession — LaunchSession of the target app
* listener — (optional) AppStateListener with methods to be called on success or failure

ServiceSubscription <AppStateListener> subscribeAppState (LaunchSession launchSession, AppStateListener listener)
Subscribes to changes of the state of the target app. Every time the app’s state changes, the success block will
be called with info on the app’s running status and on-screen visibility.

Related capabilities:
* Launcher.AppState.Subscribe
Parameters:
* JlaunchSession — LaunchSession of the target app
* listener — (optional) AppStateListener with methods to be called on success or failure

void launchBrowser (String url, AppLaunchListener listener) Launch the web browser. Will launch deep-linked to
provided URL, if supported on the target platform.

Related capabilities:
* Launcher.Browser
* Launcher.Browser.Params — if launching with url
Parameters:
e url
* listener — (optional) AppLaunchListener with methods to be called on success or failure

void launchYouTube (String contentld, AppLaunchListener listener) Launch YouTube app. Will launch deep-
linked to provided contentld, if supported on the target platform.

Related capabilities:
¢ Launcher.YouTube
* Launcher.YouTube.Params —if launching with contentld
Parameters:
 contentld — Video id to open
* listener — (optional) AppLaunchListener with methods to be called on success or failure

void launchNetflix (String contentld, AppLaunchListener listener) Launch Netflix app. Will launch deep-linked to
provided contentld, if supported on the target platform.

Related capabilities:
¢ Launcher.Netflix
* Launcher.Netflix.Params — if launching with contentld
Parameters:
* contentld — Video id to open
* listener — (optional) AppLaunchListener with methods to be called on success or failure

void launchHulu (String contentld, AppLaunchListener listener) Launch Hulu app. Will launch deep-linked to
provided contentld, if supported on the target platform.

Related capabilities:

5.10. API References 85

connectSDK

¢ Launcher.Hulu
* Launcher.Hulu.Params —if launching with contentld
Parameters:
* contentld — Video id to open
* listener — (optional) AppLaunchListener with methods to be called on success or failure

void launchAppStore (String appld, AppLaunchListener listener) Launch the device’s app store app, optionally
deep-linked to a specific app’s page.

Related capabilities:
e Launcher.AppStore
* Launcher.AppStore.Params
Parameters:
* appld — (optional) ID of the application to show in the app store
* listener — (optional) AppLaunchListener with methods to be called on success or failure
void onLoseReachability (DeviceServiceReachability reachability) Parameters:
¢ reachability
void unsubscribe (URLServiceSubscription<?> subscription) Parameters:
* subscription
void sendCommand (ServicecCommand<?> command) Parameters:

e command

DLNAService

com.connectsdk.service.DLNAService
extends DeviceService

DLNAService is a rough control implementation for the UPnP AVTransport, MediaRenderer, and RenderingControl
services. DLNA commands & events occur over HTTP.

This service currently exists for the sole purpose of providing media control/playback functionality for the Net-
castTVService. DiscoveryManager is currently set up to ignore any DLNA devices that are not manufactured by
LG. It is not recommended to remove this restriction, as the DLNAService implementation is not complete.

To learn more about the protocols in use by DLNAService, check out the following documents.
e UPnP
e AVTransport Service
* MediaRenderer Device

* RenderingControl Service

86 Chapter 5. Promote Your TV App

http://upnp.org/
http://upnp.org/specs/av/UPnP-av-AVTransport-v1-Service.pdf
http://upnp.org/specs/av/UPnP-av-MediaRenderer-v1-Device.pdf
http://upnp.org/specs/av/UPnP-av-RenderingControl-v1-Service.pdf

connectSDK

Properties

final String ID = “DLNA” final String AV_TRANSPORT_URN = “urn:schemas-upnp-org:service:AVTransport:
17 final String CONNECTION_MANAGER_URN = “urn:schemas-upnp-org:service:ConnectionManager:1” fi-
nal String RENDERING_CONTROL_URN = “urn:schemas-upnp-org:service:RenderingControl:1” final String
PLAY_STATE = “playState” final String DEFAULT_SUBTITLE_MIMETYPE = “text/srt” final String DE-
FAULT_SUBTITLE_TYPE = “srt”

Inner Classes

¢ PositionInfoListener

Methods

DLNAService (ServiceDescription serviceDescription, ServiceConfig serviceConfig) Parameters:
* serviceDescription
* serviceConfig

DLNAService (ServiceDescription serviceDescription, ServiceConfig serviceConfig, Context context, DLNAHttpServer dinaServe
Parameters:

* serviceDescription
* serviceConfig
* context
¢ dInaServer
Capability PriorityLevel getPriorityLevel (Class<?extends CapabilityMethods > clazz) Parameters:
e clazz
void setServiceDescription (ServiceDescription serviceDescription) Parameters:
e serviceDescription
MediaPlayer getMediaPlayer ()
CapabilityPriorityLevel getMediaPlayerCapabilityLevel ()
void getMedialnfo (final MedialnfoListener listener) Parameters:
* listener — (optional) final MedialnfoListener with methods to be called on success or failure
ServiceSubscription <MedialnfoListener> subscribeMedialnfo (MedialnfoListener listener) Parameters:
¢ listener — (optional) MedialnfoListener with methods to be called on success or failure

void displayMedia (String url, String mimeType, String title, String description, String iconSrc, final LaunchListener listener)
Parameters:

e url

* mimeType
* title

e description

* iconSrc

5.10. API References 87

urn:schemas-upnp-org:service:AVTransport:1
urn:schemas-upnp-org:service:AVTransport:1
urn:schemas-upnp-org:service:ConnectionManager:1
urn:schemas-upnp-org:service:RenderingControl:1

connectSDK

* listener — (optional) final LaunchListener with methods to be called on success or failure

void displayImage (String url, String mimeType, String title, String description, String iconSrc, LaunchListener listener)
This method is deprecated. Use MediaPlayer::displayImage (MediaInfo mediaInfo,
LaunchListener listener) instead.

Parameters:
e url
* mimeType
* title
¢ description
* iconSrc
* listener — (optional) LaunchListener with methods to be called on success or failure
void displayImage (Medialnfo medialnfo, LaunchListener listener) Parameters:
¢ medialnfo
¢ listener — (optional) LaunchListener with methods to be called on success or failure

void playMedia (String url, String mimeType, String title, String description, String iconSrc, boolean shouldLoop, LaunchListene
This method is deprecated. Use MediaPlayer::playMedia (MediaInfo mediaInfo, boolean
shouldLoop, LaunchListener listener) instead.

Parameters:
e url
* mimeType
* title
* description
* iconSrc
¢ shouldLoop
¢ listener — (optional) LaunchListener with methods to be called on success or failure
void playMedia (Medialnfo medialnfo, boolean shouldLoop, LaunchListener listener) Parameters:
* medialnfo
 shouldLoop
¢ listener — (optional) LaunchListener with methods to be called on success or failure
void closeMedia (LaunchSession launchSession, ResponseListener <Object> listener) Parameters:
¢ launchSession
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
MediaControl getMediaControl () Get MediaControl implementation
Returns: MediaControl
CapabilityPriorityLevel getMediaControlCapabilityLevel () Get a capability priority for current implementation
Returns: CapabilityPriorityLevel

void play (ResponseListener <Object> listener) Parameters:

88 Chapter 5. Promote Your TV App

connectSDK

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void pause (ResponseListener <Object> listener) Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void stop (ResponseListener <Object> listener) Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void rewind (ResponseListener <Object> listener) Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void fastForward (ResponseListener <Object> listener) Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
PlaylistControl getPlaylistControl ()
CapabilityPriorityLevel getPlaylistControlCapabilityLevel ()

void previous (ResponseListener <Object> listener) This method is deprecated. Use
PlaylistControl: :previous (ResponselListener<Object> listener) instead.

Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void next (ResponseListener <Object> listener) This method is deprecated. Use
PlaylistControl: :next (ResponselListener<Object> listener) instead.

Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void jumpToTrack (long index, ResponseListener <Object> listener) Play a track specified by index in the playlist
Parameters:
¢ index — index in the playlist, it starts from zero like index of array
* listener — optional response listener
void setPlayMode (PlayMode playMode, ResponseListener <Object> listener) Set order of playing tracks
Parameters:
* playMode
* listener — optional response listener
void seek (long position, ResponseListener <Object> listener) Parameters:
e position — The new position, in milliseconds from the beginning of the stream
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getDuration (final DurationListener listener) Parameters:
* listener — (optional) final DurationListener with methods to be called on success or failure
void getPosition (final PositionListener listener) Parameters:
* listener — (optional) final PositionListener with methods to be called on success or failure
void sendCommand (final ServiceCommand<?> mCommand) Parameters:
* mCommand

LaunchSession decodeLaunchSession (String type, JSONObject sessionObj) Parameters:

5.10. API References 89

connectSDK

* type
* sessionObj
void getPlayState (final PlayStateListener listener) Parameters:
* listener — (optional) final PlayStateListener with methods to be called on success or failure

ServiceSubscription <PlayStateListener> subscribePlayState (PlayStateListener listener) Subscribe for playback
state changes

Parameters:
* listener — receives play state notifications
Returns: ServiceSubscription<PlayStateListener>

void unsubscribe (URLServiceSubscription<?> subscription) Parameters:

e subscription
boolean isConnectable ()
boolean isConnected ()
void connect ()
void disconnect ()
void onLoseReachability (DeviceServiceReachability reachability) Parameters:

* reachability
void subscribeServices ()
void resubscribeServices ()
void unsubscribeServices ()
VolumeControl getVolumeControl ()
CapabilityPriorityLevel getVolumeControlCapabilityLevel ()
void volumeUp (final ResponseListener <Object> listener) Parameters:

« listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void volumeDown (final ResponseListener <Object> listener) Parameters:

* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void setVolume (float volume, ResponseListener <Object> listener) Parameters:

e volume

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getVolume (final VolumelListener listener) Parameters:

* listener — (optional) final VolumeListener with methods to be called on success or failure
void setMute (boolean isMute, ResponseListener <Object> listener) Parameters:

e isMute

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getMute (final MuteListener listener) Parameters:

¢ listener — (optional) final MuteListener with methods to be called on success or failure

90 Chapter 5. Promote Your TV App

connectSDK

ServiceSubscription <VolumeListener> subscribeVolume (VolumeListener listener) Parameters:
¢ listener — (optional) VolumeListener with methods to be called on success or failure
ServiceSubscription <MuteListener> subscribeMute (MuteListener listener) Parameters:
* listener — (optional) MuteListener with methods to be called on success or failure

static DiscoveryFilter discoveryFilter ()

Inherited Methods

void connect () Will attempt to connect to the DeviceService. The failure/success will be reported back to the De-
viceServiceListener. If the connection attempt reveals that pairing is required, the DeviceServiceListener will
also be notified in that event.

void disconnect () Will attempt to disconnect from the DeviceService. The failure/success will be reported back to
the DeviceServiceListener.

boolean isConnected () Whether the DeviceService is currently connected
boolean isConnectable ()

void cancelPairing () Explicitly cancels pairing in services that require pairing. In some services, this will hide a
prompt that is displaying on the device.

void sendPairingKey (String pairingKey) Will attempt to pair with the DeviceService with the provided pairing-
Data. The failure/success will be reported back to the DeviceServiceListener.

Parameters:

* pairingKey — Data to be used for pairing. The type of this parameter will vary depending on what type of
pairing is required, but is likely to be a string (pin code, pairing key, etc).

List<String> getCapabilities ()

boolean hasCapability (String capability) Test to see if the capabilities array contains a given capability. See the
individual Capability classes for acceptable capability values.

It is possible to append a wildcard search term . Any to the end of the search term. This method will return true
for capabilities that match the term up to the wildcard.

Example: Launcher.App.Any
Parameters:
e capability — Capability to test against

boolean hasAnyCapability (String... capabilities) Test to see if the capabilities array contains at least one capabil-
ity in a given set of capabilities. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.
Parameters:
* capabilities — Set of capabilities to test against

boolean hasCapabilities (List<String> capabilities) Test to see if the capabilities array contains a given set of capa-
bilities. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.
Parameters:

e capabilities — List of capabilities to test against

5.10. API References 91

connectSDK

ServiceDescription getServiceDescription ()

ServiceConfig getServiceConfig ()

JSONObject toJSONODbject ()

String getServiceName () Name of the DeviceService (webOS, Chromecast, etc)

void closeLaunchSession (LaunchSession launchSession, ResponseListener <Object> listener) Closes the ses-
sion on the first screen device. Depending on the sessionType, the associated service will have different ways of
handling the close functionality.

Parameters:
¢ launchSession — LaunchSession to close
* listener — (optional) listener to be called on success/failure
PlaylistControl getPlaylistControl ()
CapabilityPriorityLevel getPlaylistControlCapabilityLevel ()
void previous (ResponseListener <Object> listener) Jump playlist to the previous track.
Play previous track in the playlist
Related capabilities:
e PlaylistControl.Previous
Parameters:
* listener — optional response listener
void next (ResponseListener <Object> listener) Jump playlist to the next track.
Play next track in the playlist
Related capabilities:
e PlaylistControl.Next
Parameters:
* listener — optional response listener
void jumpToTrack (long index, ResponseListener <Object> listener) Jump the playlist to the designated track.
Play a track specified by index in the playlist
Related capabilities:
e PlaylistControl.JumpToTrack
Parameters:
* index — index in the playlist, it starts from zero like index of array
* listener — optional response listener
void setPlayMode (PlayMode playMode, ResponseListener <Object> listener) Set order of playing tracks
Parameters:
* playMode
* listener — optional response listener
MediaControl getMediaControl () Get MediaControl implementation

Returns: MediaControl

92 Chapter 5. Promote Your TV App

connectSDK

Capability PriorityLevel getMediaControlCapabilityLevel () Get a capability priority for current implementation
Returns: CapabilityPriorityLevel
void play (ResponseListener <Object> listener) Send play command.
Related capabilities:
* MediaControl.Play
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void pause (ResponseListener <Object> listener) Send pause command.
Related capabilities:
* MediaControl.Pause
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void stop (ResponseListener <Object> listener) Send play command.
Related capabilities:
e MediaControl.Stop
Parameters:
« listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void rewind (ResponseListener <Object> listener) Send rewind command.
Related capabilities:
¢ MediaControl.Rewind
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void fastForward (ResponseListener <Object> listener) Send play command.
Related capabilities:
¢ MediaControl.FastForward
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void seek (long position, ResponseListener <Object> listener) Seeks to a new position within the current media
item

Related capabilities:
¢ MediaControl.Seek
Parameters:
e position — The new position, in milliseconds from the beginning of the stream
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getDuration (DurationListener listener) Get the current media duration in milliseconds

Parameters:

5.10. API References 93

connectSDK

* listener — (optional) DurationListener with methods to be called on success or failure
void getPosition (PositionListener listener) Get the current playback position in milliseconds
Parameters:
* listener — (optional) PositionListener with methods to be called on success or failure
void getPlayState (PlayStateListener listener) Get the current state of playback
Parameters:
* listener — (optional) PlayStateListener with methods to be called on success or failure

ServiceSubscription <PlayStateListener> subscribePlayState (PlayStateListener listener) Subscribe for playback
state changes

Parameters:
* listener — receives play state notifications
Returns: ServiceSubscription<PlayStateListener>
MediaPlayer getMediaPlayer ()
CapabilityPriorityLevel getMediaPlayerCapabilityLevel ()
void getMedialnfo (MedialnfoListener listener) Parameters:
¢ listener — (optional) MedialnfoListener with methods to be called on success or failure
ServiceSubscription <MedialnfoListener> subscribeMedialnfo (MedialnfoListener listener) Parameters:
¢ listener — (optional) MedialnfoListener with methods to be called on success or failure

void displayImage (Medialnfo medialnfo, LaunchListener listener) Display an image on the device. Not all de-
vices support all of the parameters — supply as many as you have available.

Related capabilities:
* MediaPlayer.Display.Image
e MediaPlayer.MediaData.Title
* MediaPlayer.MediaData.Description
* MediaPlayer.MediaData.Thumbnail
e MediaPlayer.MediaData.MimeType
Parameters:
* medialnfo — Object of Medialnfo class which includes all the information about an image to display.
e listener — (optional) LaunchListener with methods to be called on success or failure

void playMedia (Medialnfo medialnfo, boolean shouldLoop, LaunchListener listener) Play an audio or video file
on the device. Not all devices support all of the parameters — supply as many as you have available.

Related capabilities:
* MediaPlayer.Play.Video
e MediaPlayer.Play.Audio
e MediaPlayer.MediaData.Title
* MediaPlayer.MediaData.Description

e MediaPlayer.MediaData.Thumbnail

94 Chapter 5. Promote Your TV App

connectSDK

e MediaPlayer.MediaData.MimeType
Parameters:
» medialnfo — Object of Medialnfo class which includes all the information about an image to display.
¢ shouldLoop — Whether to automatically loop playback
¢ listener — (optional) LaunchListener with methods to be called on success or failure

void closeMedia (LaunchSession launchSession, ResponseListener <Object> listener) Close a running media ses-
sion. Because media is handled differently on different platforms, it is required to keep track of LaunchSession
and MediaControl objects to control that media session in the future. LaunchSession will be required to close
the media and mediaControl will be required to control the media.

Related capabilities:
* MediaPlayer.Close
Parameters:
¢ launchSession — LaunchSession object for use in closing media instance
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
VolumeControl getVolumeControl ()
CapabilityPriorityLevel getVolumeControlCapabilityLevel ()
void volumeUp (ResponseListener <Object> listener) Sends the volume up command to the device.
Related capabilities:
* VolumeControl.UpDown
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void volumeDown (ResponseListener <Object> listener) Sends the volume down command to the device.
Related capabilities:
¢ VolumeControl.UpDown
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void setVolume (float volume, ResponseListener <Object> listener) Set the volume of the device.
Related capabilities:
¢ VolumeControl. Set
Parameters:
* volume — Volume as a float between 0.0 and 1.0
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getVolume (VolumelListener listener) Get the current volume of the device.
Related capabilities:
* VolumeControl.Get
Parameters:

* listener — (optional) VolumeListener with methods to be called on success or failure

5.10. API References 95

connectSDK

void setMute (boolean isMute, ResponseListener <Object> listener) Set the current volume.
Related capabilities:
¢ VolumeControl.Mute.Set
Parameters:
e isMute
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getMute (MuteListener listener) Get the current mute state.
Related capabilities:
* VolumeControl.Mute.Get
Parameters:
* listener — (optional) MuteListener with methods to be called on success or failure

ServiceSubscription <VolumeListener> subscribeVolume (VolumeListener listener) Subscribe to the volume on the
TV.

Related capabilities:
* VolumeControl.Subscribe
Parameters:
* listener — (optional) VolumeListener with methods to be called on success or failure
ServiceSubscription <MuteListener> subscribeMute (MuteListener listener) Subscribe to the mute state on the TV.
Related capabilities:
* VolumeControl.Mute.Subscribe
Parameters:
* listener — (optional) MuteListener with methods to be called on success or failure
void onLoseReachability (DeviceServiceReachability reachability) Parameters:
* reachability
void unsubscribe (URLServiceSubscription<?> subscription) Parameters:
* subscription
void sendCommand (ServicecCommand<?> command) Parameters:

e command

DeviceService

com.connectsdk.service.DeviceService

Overview

From a high-level perspective, DeviceService completely abstracts the functionality of a particular service/protocol
(webOS TV, Netcast TV, Chromecast, Roku, DIAL, etc).

96 Chapter 5. Promote Your TV App

connectSDK

In Depth

DeviceService is an abstract class that is meant to be extended. You shouldn’t ever use DeviceService directly, unless
extending it to provide support for an additional service/protocol.

Immediately after discovery of a DeviceService, DiscoveryManager will set the DeviceService’s Listener to the Con-
nectableDevice that owns the DeviceService. You should not change the Listener unless you intend to manage the
lifecycle of that service. The DeviceService will proxy all of its Listener method calls through the ConnectableDe-
vice’s ConnectableDeviceListener.

Connection & Pairing

Your ConnectableDevice object will let you know if you need to connect or pair to any services.

Capabilities

All DeviceService objects have a group of capabilities. These capabilities can be implemented by any object, and that
object will be returned when you call the DeviceService’s capability methods (launcher, mediaPlayer, volumeControl,
etc).

Inner Classes

e DeviceServiceListener

e PairingType

Methods

void connect () Will attempt to connect to the DeviceService. The failure/success will be reported back to the De-
viceServiceListener. If the connection attempt reveals that pairing is required, the DeviceServiceListener will
also be notified in that event.

void disconnect () Will attempt to disconnect from the DeviceService. The failure/success will be reported back to
the DeviceServiceListener.

boolean isConnected () Whether the DeviceService is currently connected
boolean isConnectable ()

void cancelPairing () Explicitly cancels pairing in services that require pairing. In some services, this will hide a
prompt that is displaying on the device.

void sendPairingKey (String pairingKey) Will attempt to pair with the DeviceService with the provided pairing-
Data. The failure/success will be reported back to the DeviceServiceListener.

Parameters:

* pairingKey — Data to be used for pairing. The type of this parameter will vary depending on what type of
pairing is required, but is likely to be a string (pin code, pairing key, etc).

List<String> getCapabilities ()

boolean hasCapability (String capability) Test to see if the capabilities array contains a given capability. See the
individual Capability classes for acceptable capability values.

5.10. API References 97

connectSDK

It is possible to append a wildcard search term . Any to the end of the search term. This method will return true
for capabilities that match the term up to the wildcard.

Example: Launcher.App.Any
Parameters:
* capability — Capability to test against

boolean hasAnyCapability (String... capabilities) Test to see if the capabilities array contains at least one capabil-
ity in a given set of capabilities. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.
Parameters:
e capabilities — Set of capabilities to test against

boolean hasCapabilities (List<String> capabilities) Test to see if the capabilities array contains a given set of capa-
bilities. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.
Parameters:
* capabilities — List of capabilities to test against

boolean hasCapabilities (String. .. capabilities) Test to see if the capabilities array contains a given set of capabili-
ties. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.
Parameters:
* capabilities — Set of capabilities to test against
ServiceDescription getServiceDescription ()
ServiceConfig getServiceConfig ()
JSONODbject toJSONODbject ()
String getServiceName () Name of the DeviceService (webOS, Chromecast, etc)

void closeLaunchSession (LaunchSession launchSession, ResponseListener <Object> listener) Closes the ses-
sion on the first screen device. Depending on the sessionType, the associated service will have different ways of
handling the close functionality.

Parameters:
¢ JlaunchSession — LaunchSession to close

* listener — (optional) listener to be called on success/failure

Inherited Methods

void onLoseReachability (DeviceServiceReachability reachability) Parameters:
e reachability

void unsubscribe (URLServiceSubscription<?> subscription) Parameters:
* subscription

void sendCommand (ServicecCommand<?> command) Parameters:

e command

98 Chapter 5. Promote Your TV App

connectSDK

DeviceServiceListener

com.connectsdk.service.DeviceService.DeviceServicelListener

Methods

void onConnectionRequired (DeviceService service) If the DeviceService requires an active connection (web-
socket, pairing, etc) this method will be called.

Parameters:
* service — DeviceService that requires connection

void onConnectionSuccess (DeviceService service) After the connection has been successfully established, and after
pairing (if applicable), this method will be called.

Parameters:
 service — DeviceService that was successfully connected

void onCapabilitiesUpdated (DeviceService service, List<String> added, List<String> removed) There are situa-
tions in which a DeviceService will update the capabilities it supports and propagate these changes to the De-
viceService. Such situations include:

* on discovery, DIALService will reach out to detect if certain apps are installed
* on discovery, certain DeviceServices need to reach out for version & region information

For more information on this particular method, see ConnectableDeviceDelegate’s connectableDe-
vice:capabilitiesAdded:removed: method.

Parameters:
* service — DeviceService that has experienced a change in capabilities
 added — List<String> of capabilities that are new to the DeviceService
» removed — List<String> of capabilities that the DeviceService has lost

void onDisconnect (DeviceService service, Error error) This method will be called on any disconnection. If error is
nil, then the connection was clean and likely triggered by the responsible DiscoveryProvider or by the user.

Parameters:
¢ service — DeviceService that disconnected

« error — Error with a description of any errors causing the disconnect. If this value is nil, then the disconnect
was clean/expected.

void onConnectionFailure (DeviceService service, Error error) Will be called if the DeviceService fails to establish
a connection.

Parameters:
¢ service — DeviceService which has failed to connect
* error — Error with a description of the failure

void onPairingRequired (DeviceService service, PairingType pairingType, Object pairingData) 1f the DeviceSer-
vice requires pairing, valuable data will be passed to the delegate via this method.

Parameters:

* service — DeviceService that requires pairing

5.10. API References 99

connectSDK

¢ pairingType — PairingType that the DeviceService requires
e pairingData — Any data that might be required for the pairing process, will usually be nil
void onPairingSuccess (DeviceService service) Parameters:
* service
void onPairingFailed (DeviceService service, Error error) If there is any error in pairing, this method will be called.
Parameters:
* service — DeviceService that has failed to complete pairing

e error — Error with a description of the failure

FireTVService

com.connectsdk.service.FireTVService
extends DeviceService

FireTVService provides capabilities for FireTV devices. FireTVService acts as a layer on top of Fling SDK, and
requires the Fling SDK library to function. FireTVService provides the following functionality:

¢ Media playback
¢ Media control

Using Connect SDK for discovery/control of FireTV devices will result in your app complying with the Fling SDK
terms of service.

Properties

final String ID = “FireTV”

Inner Classes

* ConvertResult
* PlayStateSubscription

* Subscription

Methods

FireTVService (ServiceDescription serviceDescription, ServiceConfig serviceConfig) Parameters:
* serviceDescription
* serviceConfig

void connect () Prepare a service for usage

boolean isConnected () Check if service is ready

boolean isConnectable () Check if service implements connect/disconnect methods

void disconnect () Disconnect a service and close all subscriptions

100 Chapter 5. Promote Your TV App

connectSDK

Capability PriorityLevel getPriorityLevel (Class<?extends CapabilityMethods > clazz) Get a priority level for a
particular capability

Parameters:
e clazz
MediaPlayer getMediaPlayer () Get MediaPlayer implementation
Capability Priority Level getMediaPlayerCapabilityLevel () Get MediaPlayer priority level

void getMedialnfo (final MedialnfoListener listener) Get Medialnfo available only during playback otherwise re-
turns an error

Parameters:
* listener — (optional) final MedialnfoListener with methods to be called on success or failure
ServiceSubscription <MedialnfoListener> subscribeMedialnfo (MedialnfoListener listener) Not supported
Parameters:
¢ listener — (optional) MedialnfoListener with methods to be called on success or failure

void displayImage (String url, String mimeType, String title, String description, String iconSrc, final LaunchListener listener)
Display an image with metadata

Parameters:
e url — media source
* mimeType
e title
¢ description
* iconSrc
* listener — (optional) final LaunchListener with methods to be called on success or failure

void playMedia (String url, String mimeType, String title, String description, String iconSrc, boolean shouldLoop, LaunchListene
Play audio/video

Parameters:
¢ url — media source
* mimeType
e title
* description
* iconSrc
* shouldLoop — skipped in current implementation
¢ listener — (optional) LaunchListener with methods to be called on success or failure

void closeMedia (LaunchSession launchSession, final ResponseListener <Object> listener) Stop and close media
player on FireTV. In current implementation it’s similar to stop method

Parameters:
¢ JaunchSession

« listener — (optional) final ResponseListener< Object > with methods to be called on success or failure

5.10. API References 101

connectSDK

void displayImage (Medialnfo medialnfo, LaunchListener listener) Display an image with metadata
Parameters:
* medialnfo
* listener — (optional) LaunchListener with methods to be called on success or failure
void playMedia (Medialnfo medialnfo, boolean shouldLoop, LaunchListener listener) Play audio/video
Parameters:
* medialnfo
* shouldLoop — skipped in current implementation
¢ listener — (optional) LaunchListener with methods to be called on success or failure
MediaControl getMediaControl () Get MediaControl capability. It should be used only during media playback.
CapabilityPriorityLevel getMediaControlCapabilityLevel () Get MediaControl priority level
void play (ResponseListener <Object> listener) Play current media.
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void pause (ResponseListener <Object> listener) Pause current media.
Parameters:
« listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void stop (ResponseListener <Object> listener) Stop current media and close FireTV application.
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void rewind (ResponseListener <Object> listener) Not supported
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void fastForward (ResponseListener <Object> listener) Not supported
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void previous (ResponseListener <Object> listener) Not supported
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void next (ResponseListener <Object> listener) Not supported
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void seek (long position, ResponseListener <Object> listener) Seek current media.
Parameters:
* position — time in milliseconds

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

102 Chapter 5. Promote Your TV App

connectSDK

void getDuration (final DurationListener listener) Get current media duration.
Parameters:
* listener — (optional) final DurationListener with methods to be called on success or failure
void getPosition (final PositionListener listener) Get playback position
Parameters:
¢ listener — (optional) final PositionListener with methods to be called on success or failure
void getPlayState (final PlayStateListener listener) Get playback state
Parameters:
* listener — (optional) final PlayStateListener with methods to be called on success or failure

ServiceSubscription <PlayStateListener> subscribePlayState (final PlayStateListener listener) Subscribe to play-
back state. Only single instance of subscription is available. Each new call returns the same subscription
object.

Parameters:
« listener — (optional) final PlayStateListener with methods to be called on success or failure

static DiscoveryFilter discoveryFilter () Get filter instance for this service which contains a name of service and id.
It is used in discovery process

Inherited Methods

void connect () Will attempt to connect to the DeviceService. The failure/success will be reported back to the De-
viceServiceListener. If the connection attempt reveals that pairing is required, the DeviceServiceListener will
also be notified in that event.

void disconnect () Will attempt to disconnect from the DeviceService. The failure/success will be reported back to
the DeviceServiceListener.

boolean isConnected () Whether the DeviceService is currently connected
boolean isConnectable ()

void cancelPairing () Explicitly cancels pairing in services that require pairing. In some services, this will hide a
prompt that is displaying on the device.

void sendPairingKey (String pairingKey) Will attempt to pair with the DeviceService with the provided pairing-
Data. The failure/success will be reported back to the DeviceServiceListener.

Parameters:

* pairingKey — Data to be used for pairing. The type of this parameter will vary depending on what type of
pairing is required, but is likely to be a string (pin code, pairing key, etc).

List<String> getCapabilities ()

boolean hasCapability (String capability) Test to see if the capabilities array contains a given capability. See the
individual Capability classes for acceptable capability values.

It is possible to append a wildcard search term . Any to the end of the search term. This method will return true
for capabilities that match the term up to the wildcard.

Example: Launcher.App.Any

Parameters:

5.10. API References 103

connectSDK

e capability — Capability to test against

boolean hasAnyCapability (String... capabilities) Test to see if the capabilities array contains at least one capabil-
ity in a given set of capabilities. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.
Parameters:
e capabilities — Set of capabilities to test against

boolean hasCapabilities (List<String> capabilities) Test to see if the capabilities array contains a given set of capa-
bilities. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.
Parameters:
* capabilities — List of capabilities to test against
ServiceDescription getServiceDescription ()
ServiceConfig getServiceConfig ()
JSONObject toJSONObject ()
String getServiceName () Name of the DeviceService (webOS, Chromecast, etc)

void closeLaunchSession (LaunchSession launchSession, ResponseListener <Object> listener) Closes the ses-
sion on the first screen device. Depending on the sessionType, the associated service will have different ways of
handling the close functionality.

Parameters:
¢ launchSession — LaunchSession to close
* listener — (optional) listener to be called on success/failure
MediaPlayer getMediaPlayer ()
CapabilityPriorityLevel getMediaPlayerCapabilityLevel ()
void getMedialnfo (MedialnfoListener listener) Parameters:
¢ listener — (optional) MedialnfoListener with methods to be called on success or failure
ServiceSubscription <MedialnfoListener> subscribeMedialnfo (MedialnfoListener listener) Parameters:
* listener — (optional) MedialnfoListener with methods to be called on success or failure

void displayImage (Medialnfo medialnfo, LaunchListener listener) Display an image on the device. Not all de-
vices support all of the parameters — supply as many as you have available.

Related capabilities:
e MediaPlayer.Display.Image
* MediaPlayer.MediaData.Title
* MediaPlayer.MediaData.Description
* MediaPlayer.MediaData.Thumbnail
e MediaPlayer.MediaData.MimeType
Parameters:
* medialnfo — Object of Medialnfo class which includes all the information about an image to display.

* listener — (optional) LaunchListener with methods to be called on success or failure

104 Chapter 5. Promote Your TV App

connectSDK

void playMedia (Medialnfo medialnfo, boolean shouldLoop, LaunchListener listener) Play an audio or video file
on the device. Not all devices support all of the parameters — supply as many as you have available.

Related capabilities:
* MediaPlayer.Play.Video
* MediaPlayer.Play.Audio
* MediaPlayer.MediaData.Title
* MediaPlayer.MediaData.Description
e MediaPlayer.MediaData.Thumbnail
e MediaPlayer.MediaData.MimeType
Parameters:
* medialnfo — Object of Medialnfo class which includes all the information about an image to display.
¢ shouldLoop — Whether to automatically loop playback
¢ listener — (optional) LaunchListener with methods to be called on success or failure

void closeMedia (LaunchSession launchSession, ResponseListener <Object> listener) Close a running media ses-
sion. Because media is handled differently on different platforms, it is required to keep track of LaunchSession
and MediaControl objects to control that media session in the future. LaunchSession will be required to close
the media and mediaControl will be required to control the media.

Related capabilities:
* MediaPlayer.Close
Parameters:
* launchSession — LaunchSession object for use in closing media instance
« listener — (optional) ResponseListener< Object > with methods to be called on success or failure
MediaControl getMediaControl () Get MediaControl implementation
Returns: MediaControl
Capability PriorityLevel getMediaControlCapabilityLevel () Get a capability priority for current implementation
Returns: CapabilityPriorityLevel
void play (ResponseListener <Object> listener) Send play command.
Related capabilities:
* MediaControl.Play
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void pause (ResponseListener <Object> listener) Send pause command.
Related capabilities:
¢ MediaControl.Pause
Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

5.10. API References 105

connectSDK

void stop (ResponseListener <Object> listener) Send play command.
Related capabilities:
* MediaControl.Stop
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void rewind (ResponseListener <Object> listener) Send rewind command.
Related capabilities:
* MediaControl.Rewind
Parameters:
« listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void fastForward (ResponseListener <Object> listener) Send play command.
Related capabilities:
¢ MediaControl.FastForward
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void previous (ResponseListener <Object> listener) This method is deprecated.
PlaylistControl::previous (Responselistener<Object> listener) instead.

Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void next (ResponseListener <Object> listener) This method is deprecated.
PlaylistControl: :next (ResponselListener<Object> listener) instead.

Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

Use

Use

void seek (long position, ResponseListener <Object> listener) Seeks to a new position within the current media

item
Related capabilities:
* MediaControl.Seek
Parameters:
e position — The new position, in milliseconds from the beginning of the stream
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getDuration (DurationListener listener) Get the current media duration in milliseconds
Parameters:
e listener — (optional) DurationListener with methods to be called on success or failure
void getPosition (PositionListener listener) Get the current playback position in milliseconds
Parameters:

* listener — (optional) PositionListener with methods to be called on success or failure

106 Chapter 5. Promote Your TV App

connectSDK

void getPlayState (PlayStateListener listener) Get the current state of playback
Parameters:
* listener — (optional) PlayStateListener with methods to be called on success or failure

ServiceSubscription <PlayStateListener> subscribePlayState (PlayStateListener listener) Subscribe for playback
state changes

Parameters:
* listener — receives play state notifications
Returns: ServiceSubscription<PlayStateListener>
void onLoseReachability (DeviceServiceReachability reachability) Parameters:
* reachability
void unsubscribe (URLServiceSubscription<?> subscription) Parameters:
* subscription
void sendCommand (ServicecCommand<?> command) Parameters:

e command

NetcastTVService

com.connectsdk.service.NetcastTVService
extends DeviceService <and-deviceservice>

NetcastTVService provides capabilities for LG Smart TVs running Netcast versions 3.x and 4.x (model years 2012-
2014). The media playback functionality of NetcastTVService may be proxied through to DLNAService to avoid
requiring pairing. Commands & subscriptions on Netcast occur over HTTP.

The following capabilities are provided by the Netcast OS:
¢ Media playback
* Media control
* App launching*
* Volume control*
 Text input control*
» Key control (fiveway)*
* Mouse control*
* Power control*
* TV control (change channels, get channel info)*
 External input control*
* =requires pairing

To learn more about Netcast’s second screen protocol, visit the UDAP protocol specification.

5.10. API References 107

http://developer.lgappstv.com/TV_HELP/index.jsp?topic=%2Flge.tvsdk.references.book%2Fhtml%2FUDAP%2FUDAP%2FLG+UDAP+2+0+Protocol+Specifications.htm

connectSDK

Properties

final String ID = “Netcast TV”

final String UDAP_PATH_PAIRING = “/udap/api/pairing”

final String UDAP_PATH_DATA = “/udap/api/data”

final String UDAP_PATH_COMMAND = “/udap/api/command”

final String UDAP_PATH_EVENT = “/udap/api/event”

final String UDAP_PATH_APPTOAPP_DATA = “/udap/api/apptoapp/data/”
final String UDAP_PATH_APPTOAPP_COMMAND = “/udap/api/apptoapp/command/”
final String ROAP_PATH_APP_STORE = “/roap/api/command/”

final String UDAP_API_PAIRING = “pairing”

final String UDAP_API_COMMAND = “command”

final String UDAP_API_EVENT = “event”

final String TARGET_CHANNEL_LIST = “channel_list”

final String TARGET_CURRENT_CHANNEL = “cur_channel”

final String TARGET_VOLUME_INFO = “volume_info”

final String TARGET_APPLIST_GET = “applist_get”

final String TARGET_APPNUM_GET = “appnum_get”

final String TARGET_3D_MODE = “3DMode”

final String TARGET _IS_3D = “is_3D”

final String SMART_SHARE = “SmartShare?”

Inner Classes

¢ NetcastTVLaunchSessionR

e State

Methods

NetcastTVService (ServiceDescription serviceDescription, ServiceConfig serviceConfig) Parameters:
* serviceDescription
 serviceConfig

Capability PriorityLevel getPriorityLevel (Class<?extends CapabilityMethods > clazz) Parameters:
e clazz

void setServiceDescription (ServiceDescription serviceDescription) Parameters:

* serviceDescription

108 Chapter 5. Promote Your TV App

connectSDK

void connect ()
void disconnect ()
boolean isConnectable ()
boolean isConnected ()
void onLoseReachability (DeviceServiceReachability reachability) Parameters:
* reachability
void hostByeBye ()
void showPairingKeyOnTYV ()
void cancelPairing ()
void removePairingKeyOnTYV ()
void sendPairingKey (final String pairingKey) Parameters:
¢ pairingKey
Launcher getLauncher ()
CapabilityPriorityLevel getLauncherCapabilityLevel ()
void getApplication (final String appName, final AppInfoListener listener) Parameters:
e appName
* listener — (optional) final AppInfoListener with methods to be called on success or failure
void launchApp (final String appld, final AppLaunchListener listener) Parameters:
* appld
* listener — (optional) final AppLaunchListener with methods to be called on success or failure
void launchAppWithInfo (AppInfo appInfo, Launcher . AppLaunchListener listener) Parameters:
* applnfo
* listener — (optional) Launcher.AppLaunchListener with methods to be called on success or failure

void launchAppWithInfo (AppInfo appInfo, Object params, Launcher.AppLaunchListener listener)
Parameters:

* applnfo

e params

* listener — (optional) Launcher.AppLaunchListener with methods to be called on success or failure
void launchBrowser (String url, final Launcher.AppLaunchListener listener) Parameters:

e url

* listener — (optional) final Launcher.AppLaunchListener with methods to be called on success or failure
void launchYouTube (String contentld, Launcher.AppLaunchListener listener) Parameters:

* contentld

* listener — (optional) Launcher.AppLaunchListener with methods to be called on success or failure
void launchYouTube (final String contentld, float startTime, final AppLaunchListener listener) Parameters:

¢ contentld

5.10. API References 109

connectSDK

e startTime

¢ listener — (optional) final AppLaunchListener with methods to be called on success or failure
void launchHulu (final String contentld, final Launcher.AppLaunchListener listener) Parameters:

* contentld

¢ listener — (optional) final Launcher.AppLaunchListener with methods to be called on success or failure
void launchNetflix (final String contentld, final Launcher.AppLaunchListener listener) Parameters:

* contentld

* listener — (optional) final Launcher.AppLaunchListener with methods to be called on success or failure
void launchAppStore (final String appld, final AppLaunchListener listener) Parameters:

* appld

* listener — (optional) final AppLaunchListener with methods to be called on success or failure
void closeApp (LaunchSession launchSession, ResponseListener <Object> listener) Parameters:

* launchSession

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getAppList (final AppListListener listener) Parameters:

¢ listener — (optional) final AppListListener with methods to be called on success or failure
void getRunningApp (AppInfoListener listener) Parameters:

* listener — (optional) AppInfoListener with methods to be called on success or failure
ServiceSubscription <ApplInfoListener> subscribeRunningApp (AppInfoListener listener) Parameters:

¢ listener — (optional) AppInfoListener with methods to be called on success or failure
void getAppState (final LaunchSession launchSession, final AppStateListener listener) Parameters:

¢ launchSession

* listener — (optional) final AppStateListener with methods to be called on success or failure

ServiceSubscription <AppStateListener> subscribeAppState (LaunchSession launchSession, AppStateListener listener)
Parameters:

¢ launchSession

* listener — (optional) AppStateListener with methods to be called on success or failure
TVControl getTVControl ()
CapabilityPriorityLevel getTVControlCapabilityLevel ()
void getChannelList (final ChannelListListener listener) Parameters:

¢ listener — (optional) final ChannelListListener with methods to be called on success or failure
void channelUp (ResponseListener <Object> listener) Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void channelDown (ResponseListener <Object> listener) Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void setChannel (final Channellnfo channellnfo, final ResponseListener <Object> listener) Parameters:

110 Chapter 5. Promote Your TV App

connectSDK

e channellnfo

* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void getCurrentChannel (final ChannelListener listener) Parameters:

* listener — (optional) final ChannelListener with methods to be called on success or failure

ServiceSubscription <ChannelListener> subscribeCurrentChannel (final ChannelListener listener)
Parameters:

* listener — (optional) final ChannelListener with methods to be called on success or failure
void getProgramlInfo (ProgramiInfoListener listener) Parameters:
* listener — (optional) ProgramInfoListener with methods to be called on success or failure

ServiceSubscription <ProgramlInfoListener> subscribeProgramlInfo (ProgramlInfoListener listener)
Parameters:

* listener — (optional) ProgramInfoListener with methods to be called on success or failure
void getProgramList (ProgramlListListener listener) Parameters:

* listener — (optional) ProgramListListener with methods to be called on success or failure
ServiceSubscription <ProgramlListListener> subscribeProgramList (ProgramListListener listener) Parameters:

* listener — (optional) ProgramListListener with methods to be called on success or failure
void set3DEnabled (final boolean enabled, final ResponseListener <Object> listener) Parameters:

* enabled

* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void get3DEnabled (final State3DModeListener listener) Parameters:

* listener — (optional) final State3DModeListener with methods to be called on success or failure

ServiceSubscription <State3DModeListener> subscribe3DEnabled (final State3DModeListener listener)
Parameters:

* listener — (optional) final State3DModeListener with methods to be called on success or failure
VolumeControl getVolumeControl ()
CapabilityPriorityLevel getVolumeControlCapabilityLevel ()
void volumeUp (ResponseListener <Object> listener) Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void volumeDown (ResponseListener <Object> listener) Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void setVolume (float volume, ResponseListener <Object> listener) Parameters:

e volume

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getVolume (final VolumelListener listener) Parameters:

* listener — (optional) final VolumeListener with methods to be called on success or failure
void setMute (final boolean isMute, final ResponseListener <Object> listener) Parameters:

¢ isMute

5.10. API References 111

connectSDK

* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void getMute (final MuteListener listener) Parameters:

* listener — (optional) final MuteListener with methods to be called on success or failure
ServiceSubscription <VolumelListener> subscribeVolume (VolumeListener listener) Parameters:

¢ listener — (optional) VolumeListener with methods to be called on success or failure
ServiceSubscription <MuteListener> subscribeMute (MuteListener listener) Parameters:

* listener — (optional) MuteListener with methods to be called on success or failure
ExternallnputControl getExternallnput ()
CapabilityPriorityLevel getExternalInputControlPriorityLevel ()
void launchInputPicker (final AppLaunchListener listener) Parameters:

* listener — (optional) final AppLaunchListener with methods to be called on success or failure
void closeInputPicker (LaunchSession launchSession, ResponseListener <Object> listener) Parameters:

* launchSession

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getExternallnputList (ExternallnputListListener listener) Parameters:

¢ listener — (optional) ExternallnputListListener with methods to be called on success or failure
void setExternallnput (Externallnputlnfo input, ResponseListener <Object> listener) Parameters:

e input

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
MediaPlayer getMediaPlayer ()
CapabilityPriorityLevel getMediaPlayerCapabilityLevel ()
void getMedialnfo (final MedialnfoListener listener) Parameters:

* listener — (optional) final MedialnfoListener with methods to be called on success or failure
ServiceSubscription <MedialnfoListener> subscribeMedialnfo (MedialnfoListener listener) Parameters:

* listener — (optional) MedialnfoListener with methods to be called on success or failure

void displayImage (final String url, final String mimeType, final String title, final String description, final String iconSrc, final Me
Parameters:

e url

* mimeType

* title

e description

e iconSrc

* listener — (optional) final MediaPlayer.LaunchListener with methods to be called on success or failure
void displayImage (Medialnfo medialnfo, LaunchListener listener) Parameters:

* medialnfo

e listener — (optional) LaunchListener with methods to be called on success or failure

112 Chapter 5. Promote Your TV App

connectSDK

void playMedia (String url, String mimeType, String title, String description, String iconSrc, boolean shouldLoop, MediaPlayer.L
Parameters:

e url

* mimeType

* title

¢ description

* iconSrc

¢ shouldLoop

* listener — (optional) MediaPlayer.LaunchListener with methods to be called on success or failure

void playMedia (Medialnfo medialnfo, boolean shouldLoop, final MediaPlayer.LaunchListener listener)
Parameters:

* medialnfo

¢ shouldLoop

» listener — (optional) final MediaPlayer.LaunchListener with methods to be called on success or failure
void closeMedia (LaunchSession launchSession, ResponseListener <Object> listener) Parameters:

¢ launchSession

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
MediaControl getMediaControl () Get MediaControl implementation

Returns: MediaControl
CapabilityPriorityLevel getMediaControlCapabilityLevel () Get a capability priority for current implementation
Returns: CapabilityPriorityLevel

void play (ResponseListener <Object> listener) Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void pause (ResponseListener <Object> listener) Parameters:

« listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void stop (final ResponseListener <Object> listener) Parameters:

* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void rewind (ResponseListener <Object> listener) Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void fastForward (ResponseListener <Object> listener) Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void previous (ResponseListener <Object> listener) This method is deprecated. Use
PlaylistControl::previous (ResponselListener<Object> listener) instead.

Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

5.10. API References 113

connectSDK

void next (ResponseListener <Object> listener) This method is deprecated. Use
PlaylistControl: :next (ResponselListener<Object> listener) instead.

Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void seek (long position, ResponseListener <Object> listener) Parameters:
* position — The new position, in milliseconds from the beginning of the stream
« listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getDuration (DurationListener listener) Get the current media duration in milliseconds
Parameters:
* listener — (optional) DurationListener with methods to be called on success or failure
void getPosition (PositionListener listener) Get the current playback position in milliseconds
Parameters:
* listener — (optional) PositionListener with methods to be called on success or failure
void getPlayState (PlayStateListener listener) Get the current state of playback
Parameters:
* listener — (optional) PlayStateListener with methods to be called on success or failure

ServiceSubscription <PlayStateListener> subscribePlayState (PlayStateListener listener) Subscribe for playback
state changes

Parameters:
* listener — receives play state notifications
Returns: ServiceSubscription<PlayStateListener>
MouseControl getMouseControl ()
CapabilityPriorityLevel getMouseControlCapabilityLevel ()
void connectMouse ()
void disconnectMouse ()
void click ()
void move (double dx, double dy) Parameters:
e dx
o dy
void move (PointF diff) Parameters:
o diff
void scroll (double dx, double dy) Parameters:
e dx
. dy
void scroll (PointF diff) Parameters:
o diff

114 Chapter 5. Promote Your TV App

connectSDK

TextInputControl getTextInputControl ()
CapabilityPriorityLevel getTextInputControlCapabilityLevel ()

ServiceSubscription <TextInputStatusListener> subscribeTextInputStatus (final TextInputStatusListener listener)
Parameters:

* listener — (optional) final TextInputStatusListener with methods to be called on success or failure
void sendText (final String input) Parameters:

* input
void sendEnter ()
void sendDelete ()
KeyControl getKeyControl ()
CapabilityPriorityLevel getKeyControlCapabilityLevel ()
void up (final ResponseListener <Object> listener) Parameters:

* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void down (final ResponseListener <Object> listener) Parameters:

* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void left (final ResponseListener <Object> listener) Parameters:

* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void right (final ResponseListener <Object> listener) Parameters:

* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void ok (final ResponseListener <Object> listener) Parameters:

« listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void back (final ResponseListener <Object> listener) Parameters:

* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
void home (final ResponseListener <Object> listener) Parameters:

* listener — (optional) final ResponseListener< Object > with methods to be called on success or failure
PowerControl getPowerControl ()
CapabilityPriorityLevel getPowerControlCapabilityLevel ()
void powerOff (ResponseListener <Object> listener) Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void powerOn (ResponseListener <Object> listener) Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
String getHttpMessageForHandleKeyInput (final int keycode) Parameters:

* keycode
void sendKeyCode (KeyCode keycode, ResponseListener <Object> listener) Parameters:

* keycode

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

5.10. API References 115

connectSDK

String decToHex (String dec) Parameters:
¢ dec

String decToHex (long dec) Parameters:
e dec

void sendCommand (final ServicecCommand<?> mCommand) Parameters:
* mCommand

void unsubscribe (URLServiceSubscription<?> subscription) Parameters:
e subscription

DLNAService getDLNAService ()

DIALService getDIALService ()

static DiscoveryFilter discoveryFilter ()

Inherited Methods

void connect () Will attempt to connect to the DeviceService. The failure/success will be reported back to the De-
viceServiceListener. If the connection attempt reveals that pairing is required, the DeviceServiceListener will
also be notified in that event.

void disconnect () Will attempt to disconnect from the DeviceService. The failure/success will be reported back to
the DeviceServiceListener.

boolean isConnected () Whether the DeviceService is currently connected
boolean isConnectable ()

void cancelPairing () Explicitly cancels pairing in services that require pairing. In some services, this will hide a
prompt that is displaying on the device.

void sendPairingKey (String pairingKey) Will attempt to pair with the DeviceService with the provided pairing-
Data. The failure/success will be reported back to the DeviceServiceListener.

Parameters:

* pairingKey — Data to be used for pairing. The type of this parameter will vary depending on what type of
pairing is required, but is likely to be a string (pin code, pairing key, etc).

List<String> getCapabilities ()

boolean hasCapability (String capability) Test to see if the capabilities array contains a given capability. See the
individual Capability classes for acceptable capability values.

It is possible to append a wildcard search term . Any to the end of the search term. This method will return true
for capabilities that match the term up to the wildcard.

Example: Launcher.App.Any
Parameters:
e capability — Capability to test against

boolean hasAnyCapability (String... capabilities) Test to see if the capabilities array contains at least one capabil-
ity in a given set of capabilities. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.

Parameters:

116 Chapter 5. Promote Your TV App

connectSDK

* capabilities — Set of capabilities to test against

boolean hasCapabilities (List<String> capabilities) Test to see if the capabilities array contains a given set of capa-
bilities. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.
Parameters:
e capabilities — List of capabilities to test against
ServiceDescription getServiceDescription ()
ServiceConfig getServiceConfig ()
JSONObject toJSONObject ()
String getServiceName () Name of the DeviceService (webOS, Chromecast, etc)

void closeLaunchSession (LaunchSession launchSession, ResponseListener <Object> listener) Closes the ses-
sion on the first screen device. Depending on the sessionType, the associated service will have different ways of
handling the close functionality.

Parameters:
* JaunchSession — LaunchSession to close
* listener — (optional) listener to be called on success/failure
Launcher getLauncher ()
CapabilityPriorityLevel getLauncherCapabilityLevel ()
void launchAppWithInfo (AppInfo appInfo, AppLaunchListener listener) Launch an application on the device.
Related capabilities:
e Launcher.App
* Launcher.App.Params —if launching with params
Parameters:
 applnfo — Applnfo object for the application
* listener — (optional) AppLaunchListener with methods to be called on success or failure
void launchApp (String appld, AppLaunchListener listener) Launch an application on the device.
Related capabilities:
¢ Launcher.App
Parameters:
¢ appld — ID of the application
* listener — (optional) AppLaunchListener with methods to be called on success or failure

void closeApp (LaunchSession launchSession, ResponseListener <Object> listener) Close an application on the
device.

Related capabilities:
e Launcher.App.Close
Parameters:

¢ launchSession — LaunchSession of the target app

5.10. API References 117

connectSDK

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getAppList (AppListListener listener) Gets a list of all apps installed on the device.
Related capabilities:
e Launcher.App.List
Parameters:
* listener — (optional) AppListListener with methods to be called on success or failure
void getRunningApp (AppInfoListener listener) Gets an Applnfo object for the current running app on the device.
Related capabilities:
* Launcher.RunningApp
Parameters:
* listener — (optional) AppInfoListener with methods to be called on success or failure

ServiceSubscription <ApplInfoListener> subscribeRunningApp (AppInfoListener listener) Subscribes to changes
of the current running app. Every time the running app changes, the success block will be called with an
Applnfo object for the current running app.

Related capabilities:
e Launcher.RunningApp.Subscribe
Parameters:
* listener — (optional) AppInfoListener with methods to be called on success or failure

void getAppState (LaunchSession launchSession, AppStateListener listener) Gets the target app’s running status
and on-screen visibility.

Related capabilities:
* Launcher.AppState
Parameters:
 JaunchSession — LaunchSession of the target app
* listener — (optional) AppStateListener with methods to be called on success or failure

ServiceSubscription <AppStateListener> subscribeAppState (LaunchSession launchSession, AppStateListener listener)
Subscribes to changes of the state of the target app. Every time the app’s state changes, the success block will
be called with info on the app’s running status and on-screen visibility.

Related capabilities:
* Launcher.AppState.Subscribe
Parameters:
* JlaunchSession — LaunchSession of the target app
* listener — (optional) AppStateListener with methods to be called on success or failure

void launchBrowser (String url, AppLaunchListener listener) Launch the web browser. Will launch deep-linked to
provided URL, if supported on the target platform.

Related capabilities:
¢ Launcher.Browser

* Launcher.Browser.Params — if launching with url

118 Chapter 5. Promote Your TV App

connectSDK

Parameters:
e url
* listener — (optional) AppLaunchListener with methods to be called on success or failure

void launchYouTube (String contentld, AppLaunchListener listener) Launch YouTube app. Will launch deep-
linked to provided contentld, if supported on the target platform.

Related capabilities:
¢ Launcher.YouTube
e Launcher.YouTube.Params — if launching with contentld
Parameters:
 contentld — Video id to open
* listener — (optional) AppLaunchListener with methods to be called on success or failure

void launchNetflix (String contentld, AppLaunchListener listener) Launch Netflix app. Will launch deep-linked to
provided contentld, if supported on the target platform.

Related capabilities:
¢ Launcher.Netflix
* Launcher.Netflix.Params —if launching with contentld
Parameters:
» contentld — Video id to open
* listener — (optional) AppLaunchListener with methods to be called on success or failure

void launchHulu (String contentld, AppLaunchListener listener) Launch Hulu app. Will launch deep-linked to
provided contentld, if supported on the target platform.

Related capabilities:
¢ Launcher.Hulu
* Launcher.Hulu.Params — if launching with contentld
Parameters:
* contentld — Video id to open
* listener — (optional) AppLaunchListener with methods to be called on success or failure

void launchAppStore (String appld, AppLaunchListener listener) Launch the device’s app store app, optionally
deep-linked to a specific app’s page.

Related capabilities:
e Launcher.AppStore
* Launcher.AppStore.Params
Parameters:
¢ appld — (optional) ID of the application to show in the app store
* listener — (optional) AppLaunchListener with methods to be called on success or failure
MediaControl getMediaControl () Get MediaControl implementation

Returns: MediaControl

5.10. API References 119

connectSDK

Capability PriorityLevel getMediaControlCapabilityLevel () Get a capability priority for current implementation

Returns: CapabilityPriorityLevel
void play (ResponseListener <Object> listener) Send play command.
Related capabilities:
* MediaControl.Play
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void pause (ResponseListener <Object> listener) Send pause command.
Related capabilities:
* MediaControl.Pause
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void stop (ResponseListener <Object> listener) Send play command.
Related capabilities:
e MediaControl.Stop
Parameters:
« listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void rewind (ResponseListener <Object> listener) Send rewind command.
Related capabilities:
¢ MediaControl.Rewind
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void fastForward (ResponseListener <Object> listener) Send play command.
Related capabilities:
¢ MediaControl.FastForward
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void previous (ResponseListener <Object> listener) This method is deprecated.
PlaylistControl: :previous (Responselistener<Object> listener) instead.

Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void next (ResponseListener <Object> listener) This method is deprecated.
PlaylistControl: :next (Responselistener<Object> listener) instead.

Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

Use

Use

120 Chapter 5. Promote Your TV App

connectSDK

void seek (long position, ResponseListener <Object> listener) Seeks to a new position within the current media
item

Related capabilities:
¢ MediaControl.Seek
Parameters:
* position — The new position, in milliseconds from the beginning of the stream
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getDuration (DurationListener listener) Get the current media duration in milliseconds
Parameters:
* listener — (optional) DurationListener with methods to be called on success or failure
void getPosition (PositionListener listener) Get the current playback position in milliseconds
Parameters:
* listener — (optional) PositionListener with methods to be called on success or failure
void getPlayState (PlayStateListener listener) Get the current state of playback
Parameters:
* listener — (optional) PlayStateListener with methods to be called on success or failure

ServiceSubscription <PlayStateListener> subscribePlayState (PlayStateListener listener) Subscribe for playback
state changes

Parameters:
* listener — receives play state notifications
Returns: ServiceSubscription<PlayStateListener>
MediaPlayer getMediaPlayer ()
CapabilityPriorityLevel getMediaPlayerCapabilityLevel ()
void getMedialnfo (MedialnfoListener listener) Parameters:
* listener — (optional) MedialnfoListener with methods to be called on success or failure
ServiceSubscription <MedialnfoListener> subscribeMedialnfo (MedialnfoListener listener) Parameters:
¢ listener — (optional) MedialnfoListener with methods to be called on success or failure

void displayImage (Medialnfo medialnfo, LaunchListener listener) Display an image on the device. Not all de-
vices support all of the parameters — supply as many as you have available.

Related capabilities:
e MediaPlayer.Display.Image
* MediaPlayer.MediaData.Title
* MediaPlayer.MediaData.Description
* MediaPlayer.MediaData.Thumbnail
e MediaPlayer.MediaData.MimeType
Parameters:

» medialnfo — Object of Medialnfo class which includes all the information about an image to display.

5.10. API References 121

connectSDK

* listener — (optional) LaunchListener with methods to be called on success or failure

void playMedia (Medialnfo medialnfo, boolean shouldLoop, LaunchListener listener) Play an audio or video file
on the device. Not all devices support all of the parameters — supply as many as you have available.

Related capabilities:
* MediaPlayer.Play.Video
* MediaPlayer.Play.Audio
* MediaPlayer.MediaData.Title
e MediaPlayer.MediaData.Description
e MediaPlayer.MediaData.Thumbnail
¢ MediaPlayer.MediaData.MimeType
Parameters:
» medialnfo — Object of Medialnfo class which includes all the information about an image to display.
¢ shouldLoop — Whether to automatically loop playback
* listener — (optional) LaunchListener with methods to be called on success or failure

void closeMedia (LaunchSession launchSession, ResponseListener <Object> listener) Close a running media ses-
sion. Because media is handled differently on different platforms, it is required to keep track of LaunchSession
and MediaControl objects to control that media session in the future. LaunchSession will be required to close
the media and mediaControl will be required to control the media.

Related capabilities:
e MediaPlayer.Close
Parameters:
* launchSession — LaunchSession object for use in closing media instance
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
TVControl getTVControl ()
CapabilityPriorityLevel getTVControlCapabilityLevel ()
void channelUp (ResponseListener <Object> listener) Sends a channel up command to the TV.
Related capabilities:
e TVControl.Channel.Up
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void channelDown (ResponseListener <Object> listener) Sends a channel down command to the TV.
Related capabilities:
e TVControl.Channel.Down
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void setChannel (Channellnfo channelNumber, ResponseListener <Object> listener) Sets the current channel to
the channel provided by the Channellnfo object provided.

Related capabilities:

122 Chapter 5. Promote Your TV App

connectSDK

e TVControl.Channel.Set
Parameters:
¢ channelNumber
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getCurrentChannel (ChannelListener listener) Gets the current channel info from the TV.
Related capabilities:
e TVControl.Channel.Get
Parameters:
¢ listener — (optional) ChannelListener with methods to be called on success or failure

ServiceSubscription <ChannelListener> subscribeCurrentChannel (ChannelListener listener) Subscribes to any
changes in the current channel. Each time the channel is changed, the new channel’s info will be provided
to the success callback.

Related capabilities:
¢ TVControl.Channel.Subscribe
Parameters:
* listener — (optional) ChannelListener with methods to be called on success or failure
void getChannelList (ChannelListListener listener) Get a list of available channels from the TV.
Related capabilities:
¢ TVControl.Channel.List
Parameters:
¢ listener — (optional) ChannelListListener with methods to be called on success or failure
void getProgramInfo (ProgramlInfoListener listener) Gets the current program info from the TV.
Related capabilities:
e TVControl.Program.Get
Parameters:
* listener — (optional) ProgramInfoListener with methods to be called on success or failure

ServiceSubscription <ProgramlInfoListener> subscribeProgramlInfo (ProgramlinfoListener listener) Subscribes
to any changes in the current program. Each time the channel is changed or a new program starts, the new
program’s info will be provided to the success callback.

Related capabilities:
e TVControl.Program.Subscribe
Parameters:
* listener — (optional) ProgramInfoListener with methods to be called on success or failure

void getProgramList (ProgramlListListener listener) Gets a list of all programs scheduled to play on the current
channel.

Related capabilities:
e TVControl.Program.List

Parameters:

5.10. API References 123

connectSDK

* listener — (optional) ProgramListListener with methods to be called on success or failure

ServiceSubscription <ProgramListListener> subscribeProgramList (ProgramListListener listener) Subscribes to
any changes in the current program. Each time the channel is changed or a new program starts, the new pro-

gram’s info will be provided to the success callback.
Related capabilities:

e TVControl.Program.List.Subscribe

Parameters:
* listener — (optional) ProgramListListener with methods to be called on success or failure
void get3DEnabled (State3DModeListener listener) Gets the current 3D status of the TV.
Related capabilities:
¢ TVControl.3D.Get

Parameters:
¢ listener — (optional) State3DModeListener with methods to be called on success or failure

void set3DEnabled (boolean enabled, ResponseListener <Object> listener) Sets the current 3D status of the TV.

Related capabilities:
e TVControl.3D.Set
Parameters:
* enabled — Whether the TV’s 3D mode should be on or off

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

ServiceSubscription <State3DModeListener> subscribe3DEnabled (State3DModeListener listener) Subscribes to
changes in the TV’s 3D status.

Related capabilities:
e TVControl.3D.Subscribe
Parameters:
* listener — (optional) State3DModeListener with methods to be called on success or failure
VolumeControl getVolumeControl ()
CapabilityPriorityLevel getVolumeControlCapabilityLevel ()
void volumeUp (ResponseListener <Object> listener) Sends the volume up command to the device.
Related capabilities:
¢ VolumeControl.UpDown

Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void volumeDown (ResponseListener <Object> listener) Sends the volume down command to the device.
Related capabilities:
¢ VolumeControl.UpDown

Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

124 Chapter 5. Promote Your TV App

connectSDK

void setVolume (float volume, ResponseListener <Object> listener) Set the volume of the device.
Related capabilities:
¢ VolumeControl. Set
Parameters:
* volume — Volume as a float between 0.0 and 1.0
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getVolume (VolumelListener listener) Get the current volume of the device.
Related capabilities:
* VolumeControl.Get
Parameters:
* listener — (optional) VolumeListener with methods to be called on success or failure
void setMute (boolean isMute, ResponseListener <Object> listener) Set the current volume.
Related capabilities:
¢ VolumeControl.Mute.Set
Parameters:
¢ isMute
« listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getMute (MuteListener listener) Get the current mute state.
Related capabilities:
¢ VolumeControl.Mute.Get
Parameters:
* listener — (optional) MuteListener with methods to be called on success or failure

ServiceSubscription <VolumeListener> subscribeVolume (VolumelListener listener) Subscribe to the volume on the
TV.

Related capabilities:
* VolumeControl.Subscribe
Parameters:
* listener — (optional) VolumeListener with methods to be called on success or failure
ServiceSubscription <MuteListener> subscribeMute (MuteListener listener) Subscribe to the mute state on the TV.
Related capabilities:
* VolumeControl.Mute.Subscribe
Parameters:
* listener — (optional) MuteListener with methods to be called on success or failure
ExternallnputControl getExternallnput ()
CapabilityPriorityLevel getExternallnputControlPriorityLevel ()

5.10. API References 125

connectSDK

void launchInputPicker (AppLaunchListener listener) Launches the visual input picker on the device. This may be
helpful for situations where the device does not support directly listing/modifying the external inputs.

Related capabilities:
e ExternalInputControl.Picker.Launch
Parameters:
* listener — (optional) AppLaunchListener with methods to be called on success or failure

void closeInputPicker (LaunchSession launchSessionm, ResponseListener <Object> listener) Closes the input
picker on the device, if it is currently open.

Related capabilities:
* ExternalInputControl.Picker.Close
Parameters:
e launchSessionm
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void getExternallnputList (ExternallnputListListener listener) Get a list of input devices (HDMI, AV, etc) con-
nected to the device

Related capabilities:
* ExternalInputControl.List
Parameters:
* listener — (optional) ExternallnputListListener with methods to be called on success or failure

void setExternallnput (Externallnputlnfo input, ResponseListener <Object> listener) Switch to the specified ex-
ternal input

Related capabilities:
* ExternalInputControl.Set
Parameters:
* input
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
MouseControl getMouseControl ()
CapabilityPriorityLevel getMouseControlCapabilityLevel ()

void connectMouse () Establish a connection with the DeviceService’s mouse communication medium (WebSocket,
HTTP, etc). While this step may not be necessary with certain platforms, it is suggested to call it anyways, for
purposes of seamless normalization. Calling connect on a non-connectable protocol will just trigger the success
callback immediately.

Related capabilities:
* MouseControl.Connect
void disconnectMouse () Disconnects from the mouse communication medium.
Related capabilities:

e MouseControl.Disconnect

126 Chapter 5. Promote Your TV App

connectSDK

void click () Perform a click action at the current mouse position.
Related capabilities:
¢ MouseControl.Click
void move (double dx, double dy) Move the mouse by the given distance values.
Related capabilities:
* MouseControl.Move
Parameters:
» dx — Distance to move the mouse on the x-axis relative to its current position
* dy — Distance to move the mouse on the y-axis relative to its current position
void scroll (double dx, double dy) Scroll by the given distance values.
Related capabilities:
* MouseControl.Scroll
Parameters:
» dx — Distance to scroll the mouse on the x-axis relative to its current position
 dy — Distance to scroll the mouse on the y-axis relative to its current position
TextInputControl getTextInputControl ()
CapabilityPriorityLevel getTextInputControlCapabilityLevel ()

ServiceSubscription <TextInputStatusListener> subscribeTextInputStatus (TextInputStatusListener listener)
Subscribe to information about the current text field.

Related capabilities:
¢ TextInputControl.Subscribe
Parameters:
* listener — (optional) TextInputStatusListener with methods to be called on success or failure
void sendText (String input) Send text to the current text field.
Related capabilities:
e TextInputControl.Send.Text
Parameters:
* input
void sendEnter () Send enter key to the current text field.
Related capabilities:
¢ TextInputControl.Send.Enter
void sendDelete () Send delete event to the current text field.
Related capabilities:
¢ TextInputControl.Send.Delete
PowerControl getPowerControl ()

CapabilityPriorityLevel getPowerControlCapabilityLevel ()

5.10. API References

127

connectSDK

void powerOff (ResponseListener <Object> listener) Sends a power off signal to the TV. A success message will,
internally, trigger a disconnection with the device.

Related capabilities:
* PowerControl.Off
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void powerOn (ResponseListener <Object> listener)
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
KeyControl getKeyControl ()
CapabilityPriorityLevel getKeyControlCapabilityLevel ()
void up (ResponseListener <Object> listener) Sends the up button key code to the TV.
Related capabilities:
¢ KeyControl.Up
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void down (ResponseListener <Object> listener) Sends the down button key code to the TV.
Related capabilities:
e KeyControl.Down
Parameters:
« listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void left (ResponseListener <Object> listener) Sends the left button key code to the TV.
Related capabilities:
¢ KeyControl.Left
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void right (ResponseListener <Object> listener) Sends the right button key code to the TV.
Related capabilities:
¢ KeyControl.Right
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void ok (ResponseListener <Object> listener) Sends the OK button key code to the TV.
Related capabilities:
¢ KeyControl.OK
Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

128 Chapter 5. Promote Your TV App

connectSDK

void back (ResponseListener <Object> listener) Sends the back button key code to the TV.
Related capabilities:
¢ KeyControl.Back
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void home (ResponseListener <Object> listener) Sends the home button key code to the TV.
Related capabilities:
e KeyControl.Home
Parameters:
« listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void sendKeyCode (KeyCode keycode, ResponseListener <Object> listener) Sends a key code value to the TV.
Related capabilities:
¢ KeyControl.Send.KeyCode
Parameters:
* keycode
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void onLoseReachability (DeviceServiceReachability reachability) Parameters:
¢ reachability
void unsubscribe (URLServiceSubscription<?> subscription) Parameters:
* subscription
void sendCommand (ServicecCommand<?> command) Parameters:

e command

RokuService

com.connectsdk.service.RokuService
extends DeviceService
RokuService provides many capabilities for Roku devices. Communication with Roku devices occurs over HTTP.
e List, launch, & close apps
¢ Media playback
* Media control
 Text input control
» Key control (fiveway)

These APIs should work on all Roku devices — they have been tested on Roku 2, Roku 3, and Roku Streaming Stick
all runnning Roku 5.3 or later.

To learn more about the Roku External Control APISs, visit the Roku External Control Guide.

5.10. API References 129

http://sdkdocs.roku.com/display/sdkdoc/External+Control+Guide

connectSDK

Properties

final String ID = “Roku”

Inner Classes

¢ RokuLaunchSession

Methods

static void register App (String appld)
Parameters:
e appld
static DiscoveryFilter discoveryFilter ()
RokuService (ServiceDescription serviceDescription, ServiceConfig serviceConfig)
Parameters:
* serviceDescription
* serviceConfig
void setServiceDescription (ServiceDescription serviceDescription)
Parameters:
* serviceDescription
CapabilityPriorityLevel getPriorityLevel (Class<?extends CapabilityMethods > clazz)
Parameters:
e clazz
Launcher getLauncher ()
CapabilityPriorityLevel getLauncherCapabilityLevel ()
void launchApp (String appld, AppLaunchListener listener)
Parameters:
 appld
* listener — (optional) AppLaunchListener with methods to be called on success or failure
void launchAppWithInfo (Appinfo applnfo, Launcher. AppLaunchListener listener)
Parameters:
* applnfo

* listener — (optional) Launcher. AppLaunchListener with methods to be called on success or fail-
ure

void launchAppWithInfo (final Appinfo applnfo , Object params, final Launcher. AppLaunchListener listener)
Parameters:

* applnfo

130 Chapter 5. Promote Your TV App

connectSDK

¢ params

* listener — (optional) final Launcher.AppLaunchListener with methods to be called on success
or failure

void closeApp (LaunchSession launchSession, ResponseListener <Object> listener)
Parameters:
* launchSession
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getAppList (final AppListListener listener)
Parameters:
* listener — (optional) final AppListListener with methods to be called on success or failure
void getRunningApp (AppinfoListener listener)
Parameters:
* listener — (optional) AppInfoListener with methods to be called on success or failure
ServiceSubscription < AppInfoListener > subscribeRunningApp (AppInfoListener listener)
Parameters:
* listener — (optional) AppInfoListener with methods to be called on success or failure
void getAppState (LaunchSession launchSession, AppStateListener listener)
Parameters:
* listener — (optional) AppStateListener with methods to be called on success or failure

ServiceSubscription < AppStateListener > subscribeAppState (LaunchSession launchSession, AppStateListener lis-
tener)

Parameters:
¢ launchSession
* listener — (optional) AppStateListener with methods to be called on success or failure
void launchBrowser (String url, Launcher. AppLaunchListener listener)
Parameters:
e url

* listener — (optional) Launcher. AppLaunchListener with methods to be called on success or fail-
ure

void launchYouTube (String contentld, Launcher. AppLaunchListener listener)
Parameters:
* contentld

* listener — (optional) Launcher. AppLaunchListener with methods to be called on success or fail-
ure

void launchYouTube (String contentld, float startTime, AppLaunchListener listener)
Parameters:

e contentld

5.10. API References 131

connectSDK

* startTime
* listener — (optional) AppLaunchListener with methods to be called on success or failure
void launchNetflix (final String contentld, final Launcher. AppLaunchListener listener)
Parameters:
* contentld

* listener — (optional) final Launcher.AppLaunchListener with methods to be called on success
or failure

void launchHulu (final String contentld, final Launcher. AppLaunchListener listener)
Parameters:
* contentld

* listener — (optional) final Launcher.AppLaunchListener with methods to be called on success
or failure

void launchAppStore (final String appld, AppLaunchListener listener)
Parameters:
e appld
* listener — (optional) AppLaunchListener with methods to be called on success or failure
KeyControl getKeyControl ()
CapabilityPriorityLevel getKeyControlCapabilityLevel ()
void up (ResponseListener <Object> listener)
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void down (final ResponseListener <Object> listener)
Parameters:

* listener — (optional) final ResponseListener< Object > with methods to be called on success or
failure

void left (ResponseListener <Object> listener)
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void right (ResponseListener <Object> listener)
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void ok (final ResponseListener <Object> listener)
Parameters:

* listener — (optional) final ResponseListener< Object > with methods to be called on success or
failure

void back (ResponseListener <Object> listener)

Parameters:

132 Chapter 5. Promote Your TV App

connectSDK

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void home (ResponseListener <Object> listener)
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
MediaControl getMediaControl ()
Get MediaControl implementation
Returns: MediaControl
CapabilityPriorityLevel getMediaControlCapabilityLevel ()
Get a capability priority for current implementation
Returns: CapabilityPriorityLevel
void play (ResponseListener <Object> listener)
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void pause (ResponseListener <Object> listener)
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void stop (ResponseListener <Object> listener)
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void rewind (ResponseListener <Object> listener)
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void fastForward (ResponseListener <Object> listener)
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void previous (ResponseListener <Object> listener)

This method is deprecated. Use PlaylistControl: :previous (ResponseListener<Object>
listener) instead.

Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void next (ResponseListener <Object> listener)

This method is deprecated. Use PlaylistControl::next (ResponselListener<Object>
listener) instead.

Parameters:
» listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getDuration (DurationListener listener)

Get the current media duration in milliseconds

5.10. API References 133

connectSDK

Parameters:
* listener — (optional) DurationListener with methods to be called on success or failure
void getPosition (PositionListener listener)
Get the current playback position in milliseconds
Parameters:
* listener — (optional) PositionListener with methods to be called on success or failure
void seek (long position, ResponseListener <Object> listener)
Parameters:
* position — The new position, in milliseconds from the beginning of the stream
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
MediaPlayer getMediaPlayer ()
CapabilityPriorityLevel getMediaPlayerCapabilityLevel ()
void getMedialnfo (MedialnfoListener listener)
Parameters:
* listener — (optional) MedialnfoListener with methods to be called on success or failure
ServiceSubscription <MedialnfoListener> subscribeMedialnfo (MedialnfoListener listener)
Parameters:
* listener — (optional) MedialnfoListener with methods to be called on success or failure

void displayImage (String url, String mimeType, String title, String description, String iconSrc, Medi-
aPlayer.LaunchListener listener)

Parameters:
e url
* mimeType
* title
* description
* iconSrc

* listener — (optional) MediaPlayer.LaunchListener with methods to be called on success or fail-
ure

void displaylmage (Medialnfo medialnfo, MediaPlayer.LaunchListener listener)
Parameters:
* medialnfo

* listener — (optional) MediaPlayer.LaunchListener with methods to be called on success or fail-
ure

void playMedia (String url, String mimeType, String title, String description, String iconSrc, boolean shouldLoop,
MediaPlayer LaunchListener listener)

Parameters:

e url

134 Chapter 5. Promote Your TV App

connectSDK

* mimeType

* title

* description
* iconSrc

¢ shouldLoop

* listener — (optional) MediaPlayer.LaunchListener with methods to be called on success or fail-
ure

void playMedia (Medialnfo medialnfo, boolean shouldLoop, MediaPlayer.LaunchListener listener)
Parameters:
* medialnfo
* shouldLoop

* listener — (optional) MediaPlayer.LaunchListener with methods to be called on success or fail-
ure

void closeMedia (LaunchSession launchSession, ResponseListener <Object> listener)
Parameters:
* launchSession
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
TextInputControl getTextInputControl ()
CapabilityPriorityLevel getTextInputControlCapabilityLevel ()
ServiceSubscription <TextInputStatusListener> subscribeTextInputStatus (7Text/nputStatusListener listener)
Parameters:
* listener — (optional) TextInputStatusListener with methods to be called on success or failure
void sendText (String input)
Parameters:
* input
void sendKeyCode (KeyCode keyCode, ResponseListener <Object> listener)
Parameters:
* keyCode
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void sendEnter ()
void sendDelete ()
void unsubscribe (URLServiceSubscription<?> subscription)
Parameters:
* subscription
void sendCommand (final ServicecCommand<?> mCommand)
Parameters:

e mCommand

5.10. API References

135

connectSDK

void getPlayState (PlayStateListener listener)
Get the current state of playback
Parameters:
* listener — (optional) PlayStateListener with methods to be called on success or failure
ServiceSubscription < PlayStateListener> subscribePlayState (PlayStateListener listener)
Subscribe for playback state changes
Parameters:
* listener — receives play state notifications
Returns: ServiceSubscription<PlayStateListener>
boolean isConnectable ()
boolean isConnected ()
void connect ()
void disconnect ()
void onLoseReachability (DeviceServiceReachability reachability)
Parameters:
* reachability
DIALService getDIALService ()

Inherited Methods

void connect ()

Will attempt to connect to the DeviceService. The failure/success will be reported back to the Device-
ServiceListener. If the connection attempt reveals that pairing is required, the DeviceServiceListener will
also be notified in that event.

void disconnect ()

Will attempt to disconnect from the DeviceService. The failure/success will be reported back to the
DeviceServiceListener.

boolean isConnected ()

Whether the DeviceService is currently connected
boolean isConnectable ()
void cancelPairing ()

Explicitly cancels pairing in services that require pairing. In some services, this will hide a prompt that is
displaying on the device.

void sendPairingKey (String pairingKey)

Will attempt to pair with the DeviceService with the provided pairingData. The failure/success will be
reported back to the DeviceServiceListener.

Parameters:

* pairingKey — Data to be used for pairing. The type of this parameter will vary depending on
what type of pairing is required, but is likely to be a string (pin code, pairing key, etc).

136 Chapter 5. Promote Your TV App

connectSDK

List<String> getCapabilities ()
boolean hasCapability (String capability)

Test to see if the capabilities array contains a given capability. See the individual Capability classes for
acceptable capability values.

It is possible to append a wildcard search term .Any to the end of the search term. This method will
return true for capabilities that match the term up to the wildcard.

Example: Launcher.App.Any
Parameters:
e capability — Capability to test against

boolean hasAnyCapability (String... capabilities) Test to see if the capabilities array contains at least one capabil-
ity in a given set of capabilities. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.
Parameters:
* capabilities — Set of capabilities to test against
boolean hasCapabilities (List<String> capabilities)

Test to see if the capabilities array contains a given set of capabilities. See the individual Capability
classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.
Parameters:
* capabilities — List of capabilities to test against
ServiceDescription getServiceDescription ()
ServiceConfig getServiceConfig ()
JSONObject toJSONODbject ()
String getServiceName ()
Name of the DeviceService (webOS, Chromecast, etc)
void closeLaunchSession (LaunchSession launchSession, ResponseListener <Object> listener)

Closes the session on the first screen device. Depending on the sessionType, the associated service will
have different ways of handling the close functionality.

Parameters:
¢ launchSession — LaunchSession to close
* listener — (optional) listener to be called on success/failure
Launcher getLauncher ()
CapabilityPriorityLevel getLauncherCapabilityLevel ()
void launchAppWithInfo (AppInfo appInfo, AppLaunchListener listener) Launch an application on the device.
Related capabilities:
* Launcher.App
* Launcher.App.Params — if launching with params

Parameters:

5.10. API References 137

connectSDK

* applnfo — AppInfo object for the application
* listener — (optional) AppLaunchListener with methods to be called on success or failure
void launchApp (String appld, AppLaunchListener listener)
Launch an application on the device.
Related capabilities:
* Launcher.App
Parameters:
¢ appld — ID of the application
* listener — (optional) AppLaunchListener with methods to be called on success or failure
void closeApp (LaunchSession launchSession, ResponseListener <Object> listener)
Close an application on the device.
Related capabilities:
* Launcher.App.Close
Parameters:
* launchSession — LaunchSession of the target app
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getAppList (AppListListener listener)
Gets a list of all apps installed on the device.
Related capabilities:
* Launcher.App.List
Parameters:
* listener — (optional) AppListListener with methods to be called on success or failure
void getRunningApp (AppinfoListener listener)
Gets an Applnfo object for the current running app on the device.
Related capabilities:
e Launcher.RunningApp

Parameters:

* listener — (optional) AppInfoListener with methods to be called on success or failure
ServiceSubscription <ApplInfoListener> subscribeRunningApp (ApplnfoListener listener)

Subscribes to changes of the current running app. Every time the running app changes, the success block
will be called with an Applnfo object for the current running app.

Related capabilities:
e Launcher.RunningApp.Subscribe

Parameters:

* listener — (optional) AppInfoListener with methods to be called on success or failure

void getAppState (LaunchSession launchSession, AppStateListener listener)

138 Chapter 5. Promote Your TV App

connectSDK

Gets the target app’s running status and on-screen visibility.
Related capabilities:
e Launcher.AppState
Parameters:
¢ launchSession — LaunchSession of the target app
* listener — (optional) AppStateListener with methods to be called on success or failure

ServiceSubscription <AppStateListener> subscribeAppState (LaunchSession launchSession, AppStateListener lis-
tener)

Subscribes to changes of the state of the target app. Every time the app’s state changes, the success block
will be called with info on the app’s running status and on-screen visibility.

Related capabilities:
* Launcher.AppState.Subscribe
Parameters:
* launchSession — LaunchSession of the target app
* listener — (optional) AppStateListener with methods to be called on success or failure
void launchBrowser (String url, AppLaunchListener listener)
Launch the web browser. Will launch deep-linked to provided URL, if supported on the target platform.
Related capabilities:
* Launcher.Browser
* Launcher.Browser.Params —if launching with url
Parameters:
e url
* listener — (optional) AppLaunchListener with methods to be called on success or failure
void launchYouTube (String contentld, AppLaunchListener listener)
Launch YouTube app. Will launch deep-linked to provided contentld, if supported on the target platform.
Related capabilities:
* Launcher.YouTube
* Launcher.YouTube.Params —if launching with contentld
Parameters:
* contentld — Video id to open
* listener — (optional) AppLaunchListener with methods to be called on success or failure
void launchNetflix (String contentld, AppLaunchListener listener)
Launch Netflix app. Will launch deep-linked to provided contentld, if supported on the target platform.
Related capabilities:
* Launcher.Netflix
* Launcher.Netflix.Params —if launching with contentld

Parameters:

5.10. API References 139

connectSDK

* contentld — Video id to open
* listener — (optional) AppLaunchListener with methods to be called on success or failure
void launchHulu (String contentld, AppLaunchListener listener)
Launch Hulu app. Will launch deep-linked to provided contentld, if supported on the target platform.
Related capabilities:
* Launcher.Hulu
* Launcher.Hulu.Params — if launching with contentld
Parameters:
* contentld — Video id to open
* listener — (optional) AppLaunchListener with methods to be called on success or failure
void launchAppStore (String appld, AppLaunchListener listener)
Launch the device’s app store app, optionally deep-linked to a specific app’s page.
Related capabilities:
* Launcher.AppStore
e Launcher.AppStore.Params
Parameters:
* appld — (optional) ID of the application to show in the app store
* listener — (optional) AppLaunchListener with methods to be called on success or failure
MediaPlayer getMediaPlayer ()
CapabilityPriorityLevel getMediaPlayerCapabilityLevel ()
void getMedialnfo (MedialnfoListener listener)
Parameters:
* listener — (optional) MedialnfoListener with methods to be called on success or failure
ServiceSubscription <MedialnfoListener> subscribeMedialnfo (MedialnfoListener listener)
Parameters:
* listener — (optional) MedialnfoListener with methods to be called on success or failure
void displaylmage (Medialnfo medialnfo, LaunchListener listener)

Display an image on the device. Not all devices support all of the parameters — supply as many as you
have available.

Related capabilities:
* MediaPlayer.Display.Image
* MediaPlayer.MediaData.Title
* MediaPlayer.MediaData.Description
* MediaPlayer.MediaData.Thumbnail
* MediaPlayer.MediaData.MimeType

Parameters:

140 Chapter 5. Promote Your TV App

connectSDK

* medialnfo — Object of Medialnfo class which includes all the information about an image to
display.

* listener — (optional) LaunchListener with methods to be called on success or failure
void playMedia (Medialnfo medialnfo, boolean shouldLoop, LaunchListener listener)

Play an audio or video file on the device. Not all devices support all of the parameters — supply as many
as you have available.

Related capabilities:

* MediaPlayer.Play.Video

* MediaPlayer.Play.Audio

* MediaPlayer.MediaData.Title

* MediaPlayer.MediaData.Description

* MediaPlayer.MediaData.Thumbnail

* MediaPlayer.MediaData.MimeType
Parameters:

* medialnfo — Object of Medialnfo class which includes all the information about an image to
display.

¢ shouldLoop — Whether to automatically loop playback
* listener — (optional) LaunchListener with methods to be called on success or failure
void closeMedia (LaunchSession launchSession, ResponseListener <Object> listener)

Close a running media session. Because media is handled differently on different platforms, it is required
to keep track of LaunchSession and MediaControl objects to control that media session in the future.
LaunchSession will be required to close the media and mediaControl will be required to control the
media.

Related capabilities:
* MediaPlayer.Close
Parameters:
¢ launchSession — LaunchSession object for use in closing media instance
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
MediaControl getMediaControl ()
Get MediaControl implementation
Returns: MediaControl
CapabilityPriorityLevel getMediaControlCapabilityLevel ()
Get a capability priority for current implementation
Returns: CapabilityPriorityLevel
void play (ResponseListener <Object> listener)
Send play command.
Related capabilities:

¢ MediaControl.Play

5.10. API References 141

connectSDK

Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void pause (ResponseListener <Object> listener)
Send pause command.
Related capabilities:
* MediaControl.Pause
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void stop (ResponseListener <Object> listener)
Send play command.
Related capabilities:
* MediaControl.Stop
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void rewind (ResponseListener <Object> listener)
Send rewind command.
Related capabilities:
* MediaControl.Rewind
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void fastForward (ResponseListener <Object> listener)
Send play command.
Related capabilities:
* MediaControl.FastForward
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void previous (ResponseListener <Object> listener)

This method is deprecated. Use PlaylistControl: :previous (ResponselListener<Object>
listener) instead.

Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void next (ResponseListener <Object> listener)

This method is deprecated. Use PlaylistControl::next (Responselistener<Object>
listener) instead.

Parameters:
« listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void seek (long position, ResponseListener <Object> listener)

142 Chapter 5. Promote Your TV App

connectSDK

Seeks to a new position within the current media item
Related capabilities:
* MediaControl.Seek
Parameters:
* position — The new position, in milliseconds from the beginning of the stream
» listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getDuration (DurationListener listener)
Get the current media duration in milliseconds
Parameters:
* listener — (optional) DurationListener with methods to be called on success or failure
void getPosition (PositionListener listener)
Get the current playback position in milliseconds
Parameters:
* listener — (optional) PositionListener with methods to be called on success or failure
void getPlayState (PlayStateListener listener)
Get the current state of playback
Parameters:
* listener — (optional) PlayStateListener with methods to be called on success or failure
ServiceSubscription <PlayStateListener > subscribePlayState (PlayStateListener listener)
Subscribe for playback state changes
Parameters:
* listener — receives play state notifications
Returns: ServiceSubscription<PlayStateListener>
KeyControl getKeyControl ()
CapabilityPriorityLevel getKeyControlCapabilityLevel ()
void up (ResponseListener <Object> listener)
Sends the up button key code to the TV.
Related capabilities:
¢ KeyControl.Up
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void down (ResponseListener <Object> listener)
Sends the down button key code to the TV.
Related capabilities:
* KeyControl.Down

Parameters:

5.10. API References 143

connectSDK

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void left (ResponseListener <Object> listener)
Sends the left button key code to the TV.
Related capabilities:
* KeyControl.Left
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void right (ResponseListener <Object> listener)
Sends the right button key code to the TV.
Related capabilities:
e KeyControl.Right
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void ok (ResponseListener <Object> listener)
Sends the OK button key code to the TV.
Related capabilities:
* KeyControl.OK
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void back (ResponseListener <Object> listener)
Sends the back button key code to the TV.
Related capabilities:
* KeyControl.Back
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void home (ResponseListener <Object> listener)
Sends the home button key code to the TV.
Related capabilities:
* KeyControl.Home
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void sendKeyCode (KeyCode keycode, ResponseListener <Object> listener)
Sends a key code value to the TV.
Related capabilities:
¢ KeyControl.Send.KeyCode

Parameters:

144 Chapter 5. Promote Your TV App

connectSDK

* keycode
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
TextInputControl getTextInputControl ()
CapabilityPriorityLevel getTextInputControlCapabilityLevel ()
ServiceSubscription <TextInputStatusListener> subscribeTextInputStatus (7Text/nputStatusListener listener)
Subscribe to information about the current text field.
Related capabilities:
¢ TextInputControl.Subscribe
Parameters:
* listener — (optional) TextInputStatusListener with methods to be called on success or failure
void send Text (String inpur)
Send text to the current text field.
Related capabilities:
e TextInputControl.Send.Text
Parameters:
* input
void sendEnter ()
Send enter key to the current text field.
Related capabilities:
¢ TextInputControl.Send.Enter
void sendDelete ()
Send delete event to the current text field.
Related capabilities:
¢ TextInputControl.Send.Delete
void onLoseReachability (DeviceServiceReachability reachability)
Parameters:
* reachability
void unsubscribe (URLServiceSubscription<?> subscription)
Parameters:
* subscription
void sendCommand (ServiceCommand<?> command)
Parameters:

e command

5.10. API References 145

connectSDK

WebOSTVService

com.connectsdk.service.WebOSTVService

extends DeviceService

WebOSTVService provides capabilities for LG Smart TVs running webOS (model year 2014). The second screen
gateway running on the webOS provides different capabilities based on whether pairing is enabled or not.

Web app launching & two-way communication

App launching
Media playback

Media control

Volume control

Text input control*

Key control (fiveway)*

Mouse control*

Power control*

TV control (change channels, get channel info)*

External input control*

Toast control*

* = requires pairing

Commands & subscriptions on webOS occur over a WebSocket connection.

webOS Version History

The following version numbers represent the version of webOS released for LG Smart TVs. The version numbers are
associated with any changes to the platform’s second screen APIs in that particular version.

4.0.0
¢ Initial release
4.0.1
* No changes
4.0.2
* Added app-to-app support
* Added the ability to request pin or prompt pairing
4.0.3
* Fixed a subscription bug in app-to-app
146 Chapter 5. Promote Your TV App

connectSDK

Properties

final String ID = “webOS TV”

final String[] kWebOSTVServiceOpenPermissions = { “LAUNCH”, “LAUNCH_WEBAPP”, “APP_TO_APP”,
“CONTROL_AUDIO”, “CONTROL_INPUT_MEDIA_PLAYBACK” }

final String|[] kWebOSTVServiceProtectedPermissions = { “CONTROL_POWER”,
“READ_INSTALLED_APPS”, “CONTROL_DISPLAY”, “CONTROL_INPUT_JOYSTICK”, “CON-
TROL_INPUT_MEDIA_RECORDING”, “CONTROL_INPUT_TV”, “READ_INPUT_DEVICE_LIST”,

“READ_NETWORK_STATE”, “READ_TV_CHANNEL_LIST”, “WRITE_NOTIFICATION_TOAST” }

final String[] kWebOSTVServicePersonalActivityPermissions = { “CONTROL_INPUT_TEXT”, “CON-
TROL_MOUSE_AND_KEYBOARD”, “READ_CURRENT_CHANNEL”, “READ_RUNNING_APPS” }

Inner Classes

ACRAuthTokenListener
* LaunchPointsListener

* SecureAccessTestListener
* ServicelnfoListener

¢ SystemInfoListener

WebOSTVServicePermission

Methods

WebOSTVService (ServiceDescription serviceDescription, ServiceConfig serviceConfig)
Parameters:
* serviceDescription
* serviceConfig
void setPairingType (PairingType pairingType)
Parameters:
e pairingType
CapabilityPriorityLevel getPriorityLevel (Class<?extends CapabilityMethods > clazz)
Parameters:
e clazz
void setServiceDescription (ServiceDescription serviceDescription)
Parameters:
* serviceDescription
boolean isConnected ()
void connect ()
void disconnect ()

void cancelPairing ()

5.10. API References 147

connectSDK

Launcher getLauncher ()
CapabilityPriorityLevel getLauncherCapabilityLevel ()
void launchApp (String appld, AppLaunchListener listener)
Parameters:
e appld
* listener — (optional) AppLaunchListener with methods to be called on success or failure
void launchAppWithInfo (Appinfo applnfo, Launcher.AppLaunchListener listener)
Parameters:
* applnfo

* listener — (optional) Launcher. AppLaunchListener with methods to be called on success or fail-
ure

void launchAppWithInfo (final Appinfo applnfo, Object params, final Launcher.AppLaunchListener listener)
Parameters:
* applnfo
e params

¢ listener — (optional) final Launcher.AppLaunchListener with methods to be called on success
or failure

void launchBrowser (String url, final Launcher.AppLaunchListener listener)
Parameters:
e url

* listener — (optional) final Launcher.AppLaunchListener with methods to be called on success
or failure

void launchYouTube (String contentld, Launcher.AppLaunchListener listener)
Parameters:
* contentld

* listener — (optional) Launcher. AppLaunchListener with methods to be called on success or fail-
ure

void launchYouTube (final String contentld, float startTime, final AppLaunchListener listener)
Parameters:
 contentld
* startTime
* listener — (optional) final AppLaunchListener with methods to be called on success or failure
void launchHulu (String contentld, Launcher.AppLaunchListener listener)
Parameters:
* contentld

* listener — (optional) Launcher. AppLaunchListener with methods to be called on success or fail-
ure

void launchNetflix (String contentld, Launcher.AppLaunchListener listener)

148 Chapter 5. Promote Your TV App

connectSDK

Parameters:
e contentld

* listener — (optional) Launcher. AppLaunchListener with methods to be called on success or fail-
ure

void launchAppStore (String appld, AppLaunchListener listener)
Parameters:
* appld
* listener — (optional) AppLaunchListener with methods to be called on success or failure
void closeApp (LaunchSession launchSession, ResponseListener <Object> listener)
Parameters:
¢ launchSession
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getAppList (final AppListListener listener)
Parameters:
* listener — (optional) final AppListListener with methods to be called on success or failure
void getRunningApp (AppInfoListener listener)
Parameters:
* listener — (optional) ApplInfoListener with methods to be called on success or failure
ServiceSubscription <ApplInfoListener> subscribeRunningApp (ApplnfoListener listener)
Parameters:
* listener — (optional) AppInfoListener with methods to be called on success or failure
void getAppState (LaunchSession launchSession, AppStateListener listener)
Parameters:
* launchSession
* listener — (optional) AppStateListener with methods to be called on success or failure

ServiceSubscription <AppStateListener> subscribeAppState (LaunchSession launchSession, AppStateListener lis-
tener)

Parameters:
¢ launchSession
* listener — (optional) AppStateListener with methods to be called on success or failure
ToastControl getToastControl ()
CapabilityPriorityLevel getToastControlCapabilityLevel ()
void showToast (String message, ResponseListener <Object> listener)
Parameters:
* message
« listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void showToast (String message, String iconData, String iconExtension, ResponseListener <Object> listener)

5.10. API References 149

connectSDK

Parameters:
* message
* iconData
¢ iconExtension
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void showClickableToastForApp (String message, AppInfo applnfo, JISONObject params, ResponseListener <Ob-
ject> listener)

Parameters:
* message
* applnfo
* params
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void showClickableToastForApp (String message, Appinfo appInfo, JISONObject params, String iconData, String
iconExtension, ResponseListener <Object> listener)

Parameters:
* message
* applnfo
* params
e iconData
* iconExtension
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void showClickableToastForURL (String message, String url, ResponseListener <and-responselistener> <Object>
listener)

Parameters:
* message
e url
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void showClickableToastForURL (String message, String url, String iconData, String iconExtension, ResponseLis-
tener <and-responselistener> <Object> listener)

Parameters:
* message
* url
* iconData
* iconExtension
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
VolumeControl getVolumeControl ()
CapabilityPriorityLevel getVolumeControlCapabilityLevel ()

150 Chapter 5. Promote Your TV App

connectSDK

void volumeUp ()
void volumeUp (ResponseListener <Object> listener)
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void volumeDown ()
void volumeDown (ResponseListener <Object> listener)
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void setVolume (int volume)
Parameters:
¢ volume
void setVolume (float volume, ResponseListener <Object> listener)
Parameters:
e volume
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getVolume (VolumeListener listener)
Parameters:
* listener — (optional) VolumeListener with methods to be called on success or failure
ServiceSubscription <VolumeListener> subscribeVolume (VolumeListener listener)
Parameters:
* listener — (optional) VolumeListener with methods to be called on success or failure
void setMute (boolean isMute, ResponseListener <Object> listener)
Parameters:
* isMute
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getMute (MuteListener listener)
Parameters:
* listener — (optional) MuteListener with methods to be called on success or failure
ServiceSubscription <MuteListener> subscribeMute (MuteListener listener)
Parameters:
* listener — (optional) MuteListener with methods to be called on success or failure
void getVolumeStatus (VolumeStatusListener listener)
Parameters:
* listener — (optional) VolumeStatusListener with methods to be called on success or failure
ServiceSubscription <VolumeStatusListener> subscribeVolumeStatus (VolumeStatusListener listener)

Parameters:

5.10. API References

151

connectSDK

listener — (optional) VolumeStatusListener with methods to be called on success or failure

MediaPlayer getMediaPlayer ()

CapabilityPriorityLevel getMediaPlayerCapabilityLevel ()

void getMedialnfo (MedialnfoListener listener)

Parameters:

listener — (optional) MedialnfoListener with methods to be called on success or failure

ServiceSubscription <MedialnfoListener> subscribeMedialnfo (MedialnfoListener listener)

Parameters:

listener — (optional) MedialnfoListener with methods to be called on success or failure

void displayImage (final String url, final String mimeType, final String title, final String description, final String
iconSrc, final MediaPlayer.LaunchListener listener)

Parameters:

url
mimeType
title
description
iconSrc

listener — (optional) final MediaPlayer.LaunchListener with methods to be called on success or
failure

void displayImage (Medialnfo medialnfo, MediaPlayer LaunchListener listener)

Parameters:

medialnfo

listener — (optional) MediaPlayer.LaunchListener with methods to be called on success or fail-
ure

void playMedia (String url, String mimeType, String title, String description, String iconSrc, boolean shouldLoop,
MediaPlayer.LaunchListener listener)

Parameters:

url
mimeType
title
description
iconSrc
shouldLoop

listener — (optional) MediaPlayer.LaunchListener with methods to be called on success or fail-
ure

void playMedia (Medialnfo medialnfo, boolean shouldLoop, MediaPlayer LaunchListener listener)

Parameters:

medialnfo

152

Chapter 5. Promote Your TV App

connectSDK

* shouldLoop

* listener — (optional) MediaPlayer.LaunchListener with methods to be called on success or fail-
ure

void closeMedia (LaunchSession launchSession, ResponseListener <Object> listener)
Parameters:
* launchSession
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
MediaControl getMediaControl ()
Get MediaControl implementation
Returns: MediaControl
CapabilityPriorityLevel getMediaControlCapabilityLevel ()
Get a capability priority for current implementation
Returns: CapabilityPriorityLevel
void play (ResponseListener <Object> listener)
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void pause (ResponseListener <Object> listener)
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void stop (ResponseListener <Object> listener)
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void rewind (ResponseListener <Object> listener)
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void fastForward (ResponseListener <Object> listener)
Parameters:
» listener — (optional) ResponseListener< Object > with methods to be called onsuccess or failure
void previous (ResponseListener <Object> listener)

This method is deprecated. Use PlaylistControl: :previous (ResponseListener<Object>
listener) instead.

Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void next (ResponseListener <Object> listener)

This method is deprecated. Use PlaylistControl: :next (ResponselListener<Object>
listener) instead.

Parameters:

5.10. API References 153

connectSDK

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void seek (long position, ResponseListener <Object> listener)
Parameters:
¢ position — The new position, in milliseconds from the beginning of the stream
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getDuration (DurationListener listener)
Get the current media duration in milliseconds
Parameters:
* listener — (optional) DurationListener with methods to be called on success or failure
void getPosition (PositionListener listener)
Get the current playback position in milliseconds
Parameters:
* listener — (optional) PositionListener with methods to be called on success or failure
TVControl getTVControl ()
CapabilityPriorityLevel getTV ControlCapabilityLevel ()
void channelUp ()
void channelUp (ResponseListener <Object> listener)
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void channelDown ()
void channelDown (ResponseListener <Object> listener)
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void setChannel (Channellnfo channellnfo, ResponseListener <Object> listener)
Sets current channel
Parameters:
* channellnfo — must not be null
« listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void setChannelByld (String channelld)
Parameters:
* channelld
void setChannelByld (String channelld, ResponseListener <and-responselistener> <Object> listener)
Parameters:
* channelld
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void getCurrentChannel (ChannelListener listener)

154 Chapter 5. Promote Your TV App

connectSDK

Parameters:
* listener — (optional) ChannelListener with methods to be called on success or failure
ServiceSubscription <ChannelListener> subscribeCurrentChannel (ChannelListener listener)
Parameters:
* listener — (optional) ChannelListener with methods to be called on success or failure
void getChannelList (ChannelListListener listener)
Parameters:
* listener — (optional) ChannelListListener with methods to be called on success or failure
ServiceSubscription <ChannelListListener> subscribeChannelList (final ChannelListListener listener)
Parameters:
* listener — (optional) final ChannelListListener with methods to be called on success or failure
void getChannelCurrentProgramlInfo (PrograminfoListener listener)
Parameters:
* listener — (optional) ProgramInfoListener with methods to be called on success or failure

ServiceSubscription <ProgramlinfoListener> subscribeChannelCurrentProgramInfo (PrograminfoListener lis-
tener)

Parameters:
* listener — (optional) ProgramInfoListener with methods to be called on success or failure
void getProgramlInfo (PrograminfoListener listener)
Parameters:
* listener — (optional) ProgramInfoListener with methods to be called on success or failure
ServiceSubscription <ProgramlinfoListener> subscribeProgramlInfo (PrograminfoListener listener)
Parameters:
* listener — (optional) ProgramInfoListener with methods to be called on success or failure
void getProgramList (ProgramListListener listener)
Parameters:
* listener — (optional) ProgramListListener with methods to be called on success or failure
ServiceSubscription <ProgramListListener> subscribeProgramList (ProgramListListener listener)
Parameters:
* listener — (optional) ProgramListListener with methods to be called on success or failure
void set3DEnabled (final boolean enabled, final ResponseListener <Object> listener)
Parameters:
* enabled

* listener — (optional) final ResponseListener< Object > with methods to be called on success or
failure

void get3DEnabled (final State3DModeListener listener)

Parameters:

5.10. API References 155

connectSDK

* listener — (optional) final State3DModeListener with methods to be called on success or failure
ServiceSubscription <State3DModeListener> subscribe3DEnabled (final State3DModeListener listener)
Parameters:
* listener — (optional) final State3DModeListener with methods to be called on success or failure
ExternallnputControl getExternallnput ()
CapabilityPriorityLevel getExternallnputControlPriorityLevel ()
void launchInputPicker (final AppLaunchListener listener)
Parameters:
* listener — (optional) final AppLaunchListener with methods to be called on success or failure
void closeInputPicker (LaunchSession launchSession, ResponseListener <Object> listener)
Parameters:
¢ launchSession
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getExternallnputList (final ExternallnputListListener listener)
Parameters:

* listener — (optional) final ExternallnputListListener with methods to be called on success or
failure

void setExternallnput (Externallnputinfo externallnputlnfo, final ResponseListener <Object> listener)
Parameters:
* externallnputInfo

« listener — (optional) final ResponseListener< Object > with methods to be called on success or
failure

MouseControl getMouseControl ()
CapabilityPriorityLevel getMouseControlCapabilityLevel ()
void connectMouse ()
void disconnectMouse ()
void click ()
void move (final double dx, final double dy)
Parameters:
e dx
o dy
void move (PointF diff)
Parameters:
o diff
void scroll (final double dx, final double dy)
Parameters:

e dx

156 Chapter 5. Promote Your TV App

connectSDK

. dy
void scroll (PointF diff)
Parameters:
o diff
TextInputControl getTextInputControl ()
CapabilityPriorityLevel getTextInputControlCapabilityLevel ()
ServiceSubscription <TextInputStatusListener> subscribeTextInputStatus (7extInputStatusListener listener)
Parameters:
* listener — (optional) TextInputStatusListener with methods to be called on success or failure
void send Text (String input)
Parameters:
* input
void sendKeyCode (KeyCode keycode, ResponseListener <Object> listener)
Parameters:
* keycode
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void sendEnter ()
void sendDelete ()
PowerControl getPowerControl ()
CapabilityPriorityLevel getPowerControlCapabilityLevel ()
void powerOff (ResponseListener <Object> listener)
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void powerOn (ResponseListener <Object> listener)
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
KeyControl getKeyControl ()
CapabilityPriorityLevel getKeyControlCapabilityLevel ()
void up (ResponseListener <Object> listener)
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void down (ResponseListener <Object> listener)
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void left (ResponseListener <Object> listener)

Parameters:

5.10. API References 157

connectSDK

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void right (ResponseListener <Object> listener)
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void ok (final ResponseListener <Object> listener)
Parameters:

* listener — (optional) final ResponseListener< Object > with methods to be called on success or
failure

void back (ResponseListener <Object> listener)
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void home (ResponseListener <Object> listener)
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
WebAppLauncher getWebAppLauncher ()
CapabilityPriorityLevel getWebAppLauncherCapabilityLevel ()
void launchWebApp (final String webAppld, final WebAppSession.LaunchListener listener)
Parameters:
* webAppld

* listener — (optional) final WebAppSession.LaunchListener with methods to be called on success
or failure

void launchWebApp (String webAppld, boolean relaunchlfRunning, WebAppSession.LaunchListener listener)
Parameters:
* webAppld
* relaunchIfRunning

* listener — (optional) WebAppSession.LaunchListener with methods to be called on success or
failure

void launchWebApp (final String webAppld, final JSONObject params, final WebAppSession.LaunchListener /is-
tener)

Parameters:
* webAppld
e params

* listener — (optional) final WebAppSession.LaunchListener with methods to be called on success
or failure

void launchWebApp (final String webAppld, final JSONObject params, boolean relaunchlfRunning, final We-
bAppSession.LaunchListener listener)

Parameters:

* webAppld

158 Chapter 5. Promote Your TV App

connectSDK

* params
¢ relaunchIfRunning

* listener — (optional) final WebAppSession.LaunchListener with methods to be called on success
or failure

void closeWebApp (LaunchSession launchSession, final ResponseListener <Object> listener)
Parameters:
* launchSession

« listener — (optional) final ResponseListener< Object > with methods to be called on success or
failure

void connectToWebApp (final WebOSWebAppSession webAppSession, final boolean joinOnly, final ResponseLis-
tener <Object> connectionListener)

Parameters:
* webAppSession
* joinOnly
* connectionListener
void pinWebApp (String webAppld, final ResponseListener <Object> listener)
Parameters:
* webAppld

* listener — (optional) final ResponseListener< Object > with methods to be called on success or
failure

void unPinWebApp (String webAppld, final ResponseListener <Object> listener)
Parameters:
* webAppld

« listener — (optional) final ResponseListener< Object > with methods to be called on success or
failure

void isWebAppPinned (String webAppld, WebAppPinStatusListener listener)
Parameters:
* webAppld
» listener — (optional) WebAppPinStatusListener with methods to be called on success or failure

ServiceSubscription <WebAppPinStatusListener> subscribeIlsWebAppPinned (String webAppld, WebAppPinStatus-
Listener listener)

Parameters:
* webAppld
* listener — (optional) WebAppPinStatusListener with methods to be called on success or failure
void joinApp (String appld, WebAppSession.LaunchListener listener)
Parameters:

* appld

5.10. API References 159

connectSDK

* listener — (optional) WebAppSession.LaunchListener with methods to be called on success or
failure

void connectToApp (String appld, final WebAppSession.LaunchListener listener)
Parameters:
 appld

* listener — (optional) final WebAppSession.LaunchListener with methods to be called on success
or failure

void joinWebApp (final LaunchSession webAppLaunchSession, final WebAppSession.LaunchListener listener)
Parameters:
* webAppLaunchSession

* listener — (optional) final WebAppSession.LaunchListener with methods to be called on success
or failure

void joinWebApp (String webAppld, WebAppSession.LaunchListener listener)
Parameters:
* webAppld

* listener — (optional) WebAppSession.LaunchListener with methods to be called on success or
failure

void sendMessage (String message, LaunchSession launchSession, ResponseListener <Object> listener)
Parameters:
* message
* launchSession
» listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void sendMessage (JSONObject message, LaunchSession launchSession, ResponseListener <Object> listener)
Parameters:
* message
* launchSessio
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getServicelnfo (final ServicelnfoListener listener)
Parameters:
* listener — (optional) final ServicelnfoListener with methods to be called on success or failure
void getSystemInfo (final SystemInfoListener listener)
Parameters:
* listener — (optional) final SystemInfoListener with methods to be called on success or failure
void secureAccessTest (final SecureAccessTestListener listener)
Parameters:

* listener — (optional) final SecureAccessTestListener with methods to be called on success or
failure

void getACRAuthToken (final ACRAuthTokenListener listener)

160 Chapter 5. Promote Your TV App

connectSDK

Parameters:

* listener — (optional) final ACRAuthTokenListener with methods to be called on success or fail-
ure

void getLaunchPoints (final LaunchPointsListener listener)
Parameters:
* listener — (optional) final LaunchPointsListener with methods to be called on success or failure
PlaylistControl getPlaylistControl ()
CapabilityPriorityLevel getPlaylistControlCapabilityLevel ()
void jumpToTrack (long index, ResponseListener <Object> listener)
Play a track specified by index in the playlist
Parameters:
¢ index — index in the playlist, it starts from zero like index of array
* listener — optional response listener
void setPlayMode (PlayMode playMode, ResponseListener <Object> listener)
Set order of playing tracks
Parameters:
* playMode
* listener — optional response listener
void sendCommand (ServiceCommand<?> command)
Parameters:
e command
void unsubscribe (URLServiceSubscription<?> subscription)
Parameters:
* subscription
List<String> getPermissions ()
void setPermissions (List<String> permissions)
Parameters:
* permissions
void getPlayState (PlayStateListener listener)
Get the current state of playback
Parameters:
* listener — (optional) PlayStateListener with methods to be called on success or failure
ServiceSubscription <PlayStateListener> subscribePlayState (PlayStateListener listener)
Subscribe for playback state changes
Parameters:

* listener — receives play state notifications

5.10. API References 161

connectSDK

Returns: ServiceSubscription<PlayStateListener>
boolean isConnectable ()
void sendPairingKey (String pairingKey)
Parameters:
* pairingKey

static DiscoveryFilter discoveryFilter ()

Inherited Methods

void connect () Will attempt to connect to the DeviceService. The failure/success will be reported back to the De-
viceServiceListener. If the connection attempt reveals that pairing is required, the DeviceServiceListener will
also be notified in that event.

void disconnect () Will attempt to disconnect from the DeviceService. The failure/success will be reported back to
the DeviceServiceListener.

boolean isConnected () Whether the DeviceService is currently connected
boolean isConnectable ()

void cancelPairing () Explicitly cancels pairing in services that require pairing. In some services, this will hide a
prompt that is displaying on the device.

void sendPairingKey (String pairingKey) Will attempt to pair with the DeviceService with the provided pairing-
Data. The failure/success will be reported back to the DeviceServiceListener.

Parameters:

* pairingKey — Data to be used for pairing. The type of this parameter will vary depending on what type
of pairing is required, but is likely to be a string (pin code, pairing key, etc).

List<String> getCapabilities ()

boolean hasCapability (String capability) Test to see if the capabilities array contains a given capability. See the
individual Capability classes for acceptable capability values.

It is possible to append a wildcard search term . Any to the end of the search term. This method will return true
for capabilities that match the term up to the wildcard.

Example: Launcher.App.Any
Parameters:
* capability — Capability to test against

boolean hasAnyCapability (String... capabilities) Test to see if the capabilities array contains at least one capabil-
ity in a given set of capabilities. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.
Parameters:
* capabilities — Set of capabilities to test against

boolean hasCapabilities (List<String> capabilities) Test to see if the capabilities array contains a given set of capa-
bilities. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.

Parameters:

162 Chapter 5. Promote Your TV App

connectSDK

* capabilities — List of capabilities to test against
ServiceDescription getServiceDescription ()
ServiceConfig getServiceConfig ()
JSONObject toJSONODbject ()
String getServiceName ()
Name of the DeviceService (webOS, Chromecast, etc)
void closeLaunchSession (LaunchSession launchSession, ResponseListener <Object> listener)

Closes the session on the first screen device. Depending on the sessionType, the associated service will
have different ways of handling the close functionality.

Parameters:
¢ launchSession — LaunchSession to close
* listener — (optional) listener to be called on success/failure
Launcher getLauncher ()
CapabilityPriorityLevel getLauncherCapabilityLevel ()
void launchAppWithInfo (Appinfo applnfo, AppLaunchListener listener)
Launch an application on the device.
Related capabilities:
* Launcher.App
* Launcher.App.Params — if launching with params
Parameters:
* applnfo — Applnfo object for the application
* listener — (optional) AppLaunchListener with methods to be called on success or failure
void launchApp (String appld, AppLaunchListener listener)
Launch an application on the device.
Related capabilities:
e Launcher.App
Parameters:
* appld — ID of the application
* listener — (optional) AppLaunchListener with methods to be called on success or failure
void closeApp (LaunchSession launchSession, ResponseListener <Object> listener)
Close an application on the device.
Related capabilities:
* Launcher.App.Close
Parameters:
* launchSession — LaunchSession of the target app

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

5.10. API References 163

connectSDK

void getAppList (AppListListener listener)
Gets a list of all apps installed on the device.
Related capabilities:
e Launcher.App.List
Parameters:
* listener — (optional) AppListListener with methods to be called on success or failure
void getRunningApp (AppInfoListener listener)
Gets an Applnfo object for the current running app on the device.
Related capabilities:
* Launcher.RunningApp
Parameters:
* listener — (optional) AppInfoListener with methods to be called on success or failure
ServiceSubscription <ApplInfoListener> subscribeRunningApp (AppinfoListener listener)

Subscribes to changes of the current running app. Every time the running app changes, the success block
will be called with an Applnfo object for the current running app.

Related capabilities:
* Launcher.RunningApp.Subscribe
Parameters:
* listener — (optional) AppInfoListener with methods to be called on success or failure
void getAppState (LaunchSession launchSession, AppStateListener listener)
Gets the target app’s running status and on-screen visibility.
Related capabilities:
* Launcher.AppState
Parameters:
* launchSession — LaunchSession of the target app
* listener — (optional) AppStateListener with methods to be called on success or failure

ServiceSubscription <AppStateListener> subscribeAppState (LaunchSession launchSession, AppStateListener lis-
tener)

Subscribes to changes of the state of the target app. Every time the app’s state changes, the success block
will be called with info on the app’s running status and on-screen visibility.

Related capabilities:
* Launcher.AppState.Subscribe
Parameters:
* launchSession — LaunchSession of the target app
* listener — (optional) AppStateListener with methods to be called on success or failure
void launchBrowser (String url, AppLaunchListener listener)

Launch the web browser. Will launch deep-linked to provided URL, if supported on the target platform.

164 Chapter 5. Promote Your TV App

connectSDK

Related capabilities:
* Launcher.Browser
* Launcher.Browser.Params —if launching with url
Parameters:
e url
* listener — (optional) AppLaunchListener with methods to be called on success or failure

void launchYouTube (String contentld, AppLaunchListener listener)

Launch YouTube app. Will launch deep-linked to provided contentld, if supported on the target platform.

Related capabilities:
* Launcher.YouTube
* Launcher.YouTube.Params — if launching with contentld
Parameters:
* contentld — Video id to open
* listener — (optional) AppLaunchListener with methods to be called on success or failure
void launchNetflix (String contentld, AppLaunchListener listener)
Launch Netflix app. Will launch deep-linked to provided contentld, if supported on the target platform.
Related capabilities:
* Launcher.Netflix
e Launcher.Netflix.Params —if launching with contentld
Parameters:
* contentld — Video id to open
* listener — (optional) AppLaunchListener with methods to be called on success or failure
void launchHulu (String contentld, AppLaunchListener listener)
Launch Hulu app. Will launch deep-linked to provided contentld, if supported on the target platform.
Related capabilities:
* Launcher.Hulu
* Launcher.Hulu.Params —if launching with contentld
Parameters:
* contentld — Video id to open
* listener — (optional) AppLaunchListener with methods to be called on success or failure
void launchAppStore (String appld, AppLaunchListener listener)
Launch the device’s app store app, optionally deep-linked to a specific app’s page.
Related capabilities:
* Launcher.AppStore
* Launcher.AppStore.Params

Parameters:

5.10. API References

165

connectSDK

* appld — (optional) ID of the application to show in the app store
* listener — (optional) AppLaunchListener with methods to be called on success or failure
MediaControl getMediaControl ()
Get MediaControl implementation
Returns: MediaControl
CapabilityPriorityLevel getMediaControlCapabilityLevel ()
Get a capability priority for current implementation
Returns: CapabilityPriorityLevel
void play (ResponseListener <Object> listener)
Send play command.
Related capabilities:
* MediaControl.Play
Parameters:
« listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void pause (ResponseListener <Object> listener)
Send pause command.
Related capabilities:
* MediaControl.Pause
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void stop (ResponseListener <Object> listener)
Send play command.
Related capabilities:
* MediaControl.Stop
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void rewind (ResponseListener <Object> listener)
Send rewind command.
Related capabilities:
* MediaControl.Rewind
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void fastForward (ResponseListener <Object> listener)
Send play command.
Related capabilities:

* MediaControl.FastForward

166 Chapter 5. Promote Your TV App

connectSDK

Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void previous (ResponseListener <Object> listener)

This method is deprecated. Use PlaylistControl: :previous (ResponselListener<Object>
listener) instead.

Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void next (ResponseListener <Object> listener)

This method is deprecated. Use PlaylistControl: :next (ResponselListener<Object>
listener) instead.

Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void seek (long position, ResponseListener <Object> listener)
Seeks to a new position within the current media item
Related capabilities:
* MediaControl.Seek
Parameters:
* position — The new position, in milliseconds from the beginning of the stream
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getDuration (DurationListener listener)
Get the current media duration in milliseconds
Parameters:
* listener — (optional) DurationListener with methods to be called on success or failure
void getPosition (PositionListener listener) Get the current playback position in milliseconds
Parameters:
* listener — (optional) PositionListener with methods to be called on success or failure
void getPlayState (PlayStateListener listener) Get the current state of playback
Parameters:
* listener — (optional) PlayStateListener with methods to be called on success or failure

ServiceSubscription <PlayStateListener> subscribePlayState (PlayStateListener listener) Subscribe for playback
state changes

Parameters:
* listener — receives play state notifications
Returns: ServiceSubscription<PlayStateListener>
MediaPlayer getMediaPlayer ()
CapabilityPriorityLevel getMediaPlayerCapabilityLevel ()
void getMedialnfo (MedialnfoListener listener)

5.10. API References 167

connectSDK

Parameters:
* listener — (optional) MedialnfoListener with methods to be called on success or failure
ServiceSubscription <MedialnfoListener> subscribeMedialnfo (MedialnfoListener listener)
Parameters:
* listener — (optional) MedialnfoListener with methods to be called on success or failure
void displayImage (Medialnfo medialnfo, LaunchListener listener)

Display an image on the device. Not all devices support all of the parameters — supply as many as you
have available.

Related capabilities:
* MediaPlayer.Display.Image
* MediaPlayer.MediaData.Title
* MediaPlayer.MediaData.Description
* MediaPlayer.MediaData.Thumbnail
* MediaPlayer.MediaData.MimeType
Parameters:

* medialnfo — Object of Medialnfo class which includes all the information about an image to
display.

* listener — (optional) LaunchListener with methods to be called on success or failure
void playMedia (Medialnfo medialnfo, boolean shouldLoop, LaunchListener listener)

Play an audio or video file on the device. Not all devices support all of the parameters — supply as many
as you have available.

Related capabilities:
* MediaPlayer.Play.Video
* MediaPlayer.Play.Audio
* MediaPlayer.MediaData.Title
* MediaPlayer.MediaData.Description
* MediaPlayer.MediaData.Thumbnail
* MediaPlayer.MediaData.MimeType
Parameters:
» medialnfo — Object of Medialnfo class which includes all the information about an image to display.
¢ shouldLoop — Whether to automatically loop playback
* listener — (optional) LaunchListener with methods to be called on success or failure
void closeMedia (LaunchSession launchSession, ResponseListener <Object> listener)

Close a running media session. Because media is handled differently on different platforms, it is required
to keep track of LaunchSession and MediaControl objects to control that media session in the future.
LaunchSession will be required to close the media and mediaControl will be required to control the
media.

Related capabilities:

168 Chapter 5. Promote Your TV App

connectSDK

* MediaPlayer.Close
Parameters:
* launchSession — LaunchSession object for use in closing media instance
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
VolumeControl getVolumeControl ()
CapabilityPriorityLevel getVolumeControlCapabilityLevel ()
void volumeUp (ResponseListener <Object> listener)
Sends the volume up command to the device.
Related capabilities:
* VolumeControl.UpDown
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void volumeDown (ResponseListener <Object> listener)
Sends the volume down command to the device.
Related capabilities:
* VolumeControl.UpDown
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void setVolume (float volume, ResponseListener <Object> listener)
Set the volume of the device.
Related capabilities:
* VolumeControl.Set
Parameters:
* volume — Volume as a float between 0.0 and 1.0
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getVolume (VolumeListener listener)
Get the current volume of the device.
Related capabilities:
¢ VolumeControl.Get
Parameters:
* listener — (optional) VolumeListener with methods to be called on success or failure
void setMute (boolean isMute, ResponseListener <Object> listener)
Set the current volume.
Related capabilities:
* VolumeControl.Mute.Set

Parameters:

5.10. API References 169

connectSDK

* isMute
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getMute (MuteListener listener)
Get the current mute state.
Related capabilities:
¢ VolumeControl.Mute.Get
Parameters:
* listener — (optional) MuteListener with methods to be called on success or failure
ServiceSubscription <VolumeListener> subscribeVolume (VolumeListener listener)
Subscribe to the volume on the TV.
Related capabilities:
* VolumeControl.Subscribe
Parameters:
* listener — (optional) VolumeListener with methods to be called on success or failure
ServiceSubscription <MuteListener> subscribeMute (MuteListener listener)
Subscribe to the mute state on the TV.
Related capabilities:
* VolumeControl.Mute.Subscribe
Parameters:
* listener — (optional) MuteListener with methods to be called on success or failure
TVControl getTVControl ()
CapabilityPriorityLevel getTV ControlCapabilityLevel ()
void channelUp (ResponseListener <Object> listener)
Sends a channel up command to the TV.
Related capabilities:
e TVControl.Channel.Up
Parameters:
« listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void channelDown (ResponseListener <Object> listener)
Sends a channel down command to the TV.
Related capabilities:
e TVControl.Channel.Down
Parameters:
» listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void setChannel (Channellnfo channelNumber, ResponseListener <Object> listener)

Sets the current channel to the channel provided by the Channellnfo object provided.

170 Chapter 5. Promote Your TV App

connectSDK

Related capabilities:
e TVControl.Channel.Set
Parameters:
¢ channelNumber
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getCurrentChannel (ChannelListener listener)
Gets the current channel info from the TV.
Related capabilities:
e TVControl.Channel.Get
Parameters:
* listener — (optional) ChannelListener with methods to be called on success or failure
ServiceSubscription <ChannelListener> subscribeCurrentChannel (ChannelListener listener)

Subscribes to any changes in the current channel. Each time the channel is changed, the new channel’s
info will be provided to the success callback.

Related capabilities:
e TVControl.Channel.Subscribe
Parameters:
* listener — (optional) ChannelListener with methods to be called on success or failure
void getChannelList (ChannelListListener listener)
Get a list of available channels from the TV.
Related capabilities:
e TVControl.Channel.List
Parameters:
* listener — (optional) ChannelListListener with methods to be called on success or failure
void getProgramlInfo (PrograminfoListener listener)
Gets the current program info from the TV.
Related capabilities:
e TVControl.Program.Get
Parameters:
* listener — (optional) ProgramInfoListener with methods to be called on success or failure
ServiceSubscription <ProgramlInfoListener> subscribeProgramlInfo (ProgramlinfoListener listener)

Subscribes to any changes in the current program. Each time the channel is changed or a new program
starts, the new program’s info will be provided to the success callback.

Related capabilities:
e TVControl.Program.Subscribe

Parameters:

* listener — (optional) ProgramInfoListener with methods to be called on success or failure

5.10. API References 171

connectSDK

void getProgramList (ProgramListListener listener)
Gets a list of all programs scheduled to play on the current channel.
Related capabilities:
e TVControl.Program.List
Parameters:
* listener — (optional) ProgramListListener with methods to be called on success or failure
ServiceSubscription <ProgramListListener> subscribeProgramlList (ProgramlListListener listener)

Subscribes to any changes in the current program. Each time the channel is changed or a new program
starts, the new program’s info will be provided to the success callback.

Related capabilities:
e TVControl.Program.List.Subscribe
Parameters:
* listener — (optional) ProgramListListener with methods to be called on success or failure
void get3DEnabled (State3DModeListener listener)
Gets the current 3D status of the TV.
Related capabilities:
* TVControl.3D.Get
Parameters:
* listener — (optional) State3DModeListener with methods to be called on success or failure
void set3DEnabled (boolean enabled, ResponseListener <Object> listener)
Sets the current 3D status of the TV.
Related capabilities:
e TVControl.3D.Set
Parameters:
* enabled — Whether the TV’s 3D mode should be on or off
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
ServiceSubscription <State3DModeListener> subscribe3DEnabled (State3DModeListener listener)
Subscribes to changes in the TV’s 3D status.
Related capabilities:
* TVControl.3D.Subscribe
Parameters:
* listener — (optional) State3DModeListener with methods to be called on success or failure
ToastControl getToastControl ()
CapabilityPriorityLevel <and-capabilityprioritylevel> getToastControlCapabilityLevel ()
void showToast (String message, ResponseListener <Object> listener)

Show a toast on the TV.

172 Chapter 5. Promote Your TV App

connectSDK

Parameters:
* message — Message to display

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void showClickableToastForApp (String message, AppInfo applnfo, JISONObject params, ResponseListener <Ob-

ject> listener)
Show a toast on the TV and perform an action when the toast is clicked on the TV.
Related capabilities:
* ToastControl.Show.Clickable.App
* ToastControl.Show.Clickable.App.Params
Parameters:
* message — Message to display
* applnfo — ApplInfo for app to launch on click of toast
e params — Launch params for app
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void showClickableToastForURL (String message, String url, ResponseListener <Object> listener)
Show a toast on the TV and perform an action when the toast is clicked on the TV.
Related capabilities:
* ToastControl.Show.Clickable.URL
Parameters:
* message — Message to display
e url
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
ExternallnputControl getExternallnput ()
CapabilityPriorityLevel getExternallnputControlPriorityLevel ()
void launchInputPicker (AppLaunchListener listener)

Launches the visual input picker on the device. This may be helpful for situations where the device does
not support directly listing/modifying the external inputs.

Related capabilities:
* ExternalInputControl.Picker.Launch
Parameters:
* listener — (optional) AppLaunchListener with methods to be called on success or failure
void closeInputPicker (LaunchSession launchSessionm, ResponseListener <Object> listener)
Closes the input picker on the device, if it is currently open.
Related capabilities:
* ExternalInputControl.Picker.Close
Parameters:

¢ launchSessionm

5.10. API References

173

connectSDK

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getExternallnputList (ExternallnputListListener listener)
Get a list of input devices (HDMI, AV, etc) connected to the device
Related capabilities:
* ExternalInputControl.List
Parameters:
* listener — (optional) ExternallnputListListener with methods to be called on success or failure
void setExternallnput (Externallnputinfo input, ResponseListener <Object> listener)
Switch to the specified external input
Related capabilities:
¢ ExternalInputControl.Set
Parameters:
* input
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
MouseControl getMouseControl ()
CapabilityPriorityLevel getMouseControlCapabilityLevel ()
void connectMouse ()

Establish a connection with the DeviceService’s mouse communication medium (WebSocket, HTTP, etc).
While this step may not be necessary with certain platformes, it is suggested to call it anyways, for purposes
of seamless normalization. Calling connect on a non-connectable protocol will just trigger the success
callback immediately.

Related capabilities:
* MouseControl.Connect
void disconnectMouse ()
Disconnects from the mouse communication medium.
Related capabilities:
* MouseControl.Disconnect
void click ()
Perform a click action at the current mouse position.
Related capabilities:
* MouseControl.Click
void move (double dx, double dy)
Move the mouse by the given distance values.
Related capabilities:
* MouseControl.Move
Parameters:

¢ dx — Distance to move the mouse on the x-axis relative to its current position

174 Chapter 5. Promote Your TV App

connectSDK

* dy — Distance to move the mouse on the y-axis relative to its current position
void scroll (double dx, double dy)
Scroll by the given distance values.
Related capabilities:
* MouseControl.Scroll
Parameters:
¢ dx — Distance to scroll the mouse on the x-axis relative to its current position
* dy — Distance to scroll the mouse on the y-axis relative to its current position
TextInputControl getTextInputControl ()
CapabilityPriorityLevel getTextInputControlCapabilityLevel ()
ServiceSubscription <TextInputStatusListener> subscribeTextInputStatus (7extInputStatusListener listener)
Subscribe to information about the current text field.
Related capabilities:
* TextInputControl.Subscribe
Parameters:
* listener — (optional) TextInputStatusListener with methods to be called on success or failure
void sendText (String input)
Send text to the current text field.
Related capabilities:
¢ TextInputControl.Send.Text
Parameters:
* input
void sendEnter () Send enter key to the current text field.
Related capabilities:
¢ TextInputControl.Send.Enter
void sendDelete ()
Send delete event to the current text field.
Related capabilities:
¢ TextInputControl.Send.Delete
PowerControl getPowerControl ()
CapabilityPriorityLevel getPowerControlCapabilityLevel ()
void powerOff (ResponseListener <Object> listener)

Sends a power off signal to the TV. A success message will, internally, trigger a disconnection with the
device.

Related capabilities:

e PowerControl.Off

5.10. API References 175

connectSDK

Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void powerOn (ResponseListener <Object> listener)
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
KeyControl getKeyControl ()
CapabilityPriorityLevel getKeyControlCapabilityLevel ()
void up (ResponseListener <Object> listener)
Sends the up button key code to the TV.
Related capabilities:
* KeyControl.Up
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void down (ResponseListener <Object> listener)
Sends the down button key code to the TV.
Related capabilities:
* KeyControl.Down
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void left (ResponseListener <Object> listener)
Sends the left button key code to the TV.
Related capabilities:
* KeyControl.Left
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void right (ResponseListener <Object> listener)
Sends the right button key code to the TV.
Related capabilities:
e KeyControl.Right
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void ok (ResponseListener <Object> listener)
Sends the OK button key code to the TV.
Related capabilities:
* KeyControl.OK

Parameters:

176 Chapter 5. Promote Your TV App

connectSDK

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void back (ResponseListener <Object> listener)
Sends the back button key code to the TV.
Related capabilities:
* KeyControl.Back
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void home (ResponseListener <Object> listener)
Sends the home button key code to the TV.
Related capabilities:
* KeyControl.Home
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void sendKeyCode (KeyCode keycode, ResponseListener <Object> listener)
Sends a key code value to the TV.
Related capabilities:
¢ KeyControl.Send.KeyCode
Parameters:
* keycode
» listener — (optional) ResponseListener< Object > with methods to be called on success or failure
WebAppLauncher getWebAppLauncher ()
CapabilityPriorityLevel getWebAppLauncherCapabilityLevel ()
void launchWebApp (String webAppld, LaunchListener listener)
Launch a web application on the TV.
Related capabilities:
* WebAppLauncher.Launch
* WebAppLauncher.Launch.Params —if launching with params
Parameters:
* webAppld — ID of web app assigned by platform vendor
* listener — (optional) LaunchListener with methods to be called on success or failure
void joinWebApp (LaunchSession webAppLaunchSession, LaunchListener listener)

Join an active web app without launching/relaunching. If the app is not running/joinable, the failure block
will be called immediately.

Related capabilities:
* WebAppLauncher. Send

* WebAppLauncher.Receive

5.10. API References 177

connectSDK

Parameters:
» webAppLaunchSession — LaunchSession for the web app to be joined
* listener — (optional) LaunchListener with methods to be called on success or failure
void closeWebApp (LaunchSession launchSession, ResponseListener <Object> listener)
Closes a web app with the provided LaunchSession.
Related capabilities:
* WebAppLauncher.Close
Parameters:
* launchSession — LaunchSession associated with the web app to be closed

* listener — (optional) ResponseListener< Object > with methods to be called on success
or failure

void pinWebApp (String webAppld, ResponseListener <Object> listener)
Parameters:
* webAppld
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void unPinWebApp (String webAppld, ResponseListener <Object> listener)
Parameters:
* webAppld
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void isWebAppPinned (String webAppld, WebAppPinStatusListener listener)
Parameters:
* webAppld
* listener — (optional) WebAppPinStatusListener with methods to be called on success or failure

ServiceSubscription <WebAppPinStatusListener> subscribelsWebAppPinned (String webAppld, WebAppPinStatus-
Listener listener)

Parameters:
* webAppld
» listener — (optional) WebAppPinStatusListener with methods to be called on success or failure
PlaylistControl getPlaylistControl ()
CapabilityPriorityLevel getPlaylistControlCapabilityLevel ()
void jumpToTrack (long index, ResponseListener <Object> listener)
Jump the playlist to the designated track.
Play a track specified by index in the playlist
Related capabilities:
e PlaylistControl.JumpToTrack
Parameters:

¢ index — index in the playlist, it starts from zero like index of array

178 Chapter 5. Promote Your TV App

connectSDK

* listener — optional response listener
void setPlayMode (PlayMode playMode, ResponseListener <Object> listener)
Set order of playing tracks
Parameters:
* playMode
* listener — optional response listener
void onLoseReachability (DeviceServiceReachability reachability)
Parameters:
* reachability
void unsubscribe (URLServiceSubscription<?> subscription)
Parameters:
* subscription
void sendCommand (ServiceCommand<?> command)
Parameters:

e command

5.10.4 Capabilities

CapabilityPriorityLevel

com.connectsdk.service.capability.CapabilityMethods.CapabilityPriorityLevel

CapabilityPriorityLevel values are used by ConnectableDevice to find the most suitable DeviceService capability to
be presented to the user. Values of VeryLow and VeryHigh are not in use internally the SDK. Connect SDK uses Low,

Normal, and High internally.

Default behavior: If you are unsatisfied with the default priority levels & behavior of Connect SDK, it is possible
to subclass a particular DeviceService and provide your own value for each capability. That DeviceService subclass

would need to be registered with DiscoveryManager.

Properties

NOT_SUPPORTED = (0)
VERY_LOW = (1)

LOW = (25)

NORMAL = (50)

HIGH = (75)
VERY_HIGH = (100)

5.10. API References

179

connectSDK

Methods

CapabilityPriorityLevel (int value) Parameters:
e value

int getValue ()

ExternallnputControl

com.connectsdk.service.capability.ExternalInputControl
extends CapabilityMethods

The ExternallnputControl capability serves to define the methods required for normalizing all functions regarding
external input switching and general info.

Properties

final String Any = “ExternallnputControl. Any”

final String Picker_Launch = “ExternallnputControl.Picker.Launch”
final String Picker_Close = “ExternallnputControl.Picker.Close”

final String List = “ExternallnputControl.List”

final String Set = “ExternallnputControl.Set”

final String[] Capabilities = { Picker_Launch, Picker_Close, List, Set }

Inner Classes

o ExternallnputListListener

Methods

ExternallnputControl getExternallnput ()
CapabilityPriorityLevel getExternallnputControlPriorityLevel ()

void launchInputPicker (AppLaunchListener listener) Launches the visual input picker on the device. This may be
helpful for situations where the device does not support directly listing/modifying the external inputs.

Related capabilities:
* ExternalInputControl.Picker.Launch
Parameters:
* listener — (optional) AppLaunchListener with methods to be called on success or failure

void closeInputPicker (LaunchSession launchSessionm, ResponseListener <Object> listener) Closes the input
picker on the device, if it is currently open.

Related capabilities:

e ExternalInputControl.Picker.Close

180 Chapter 5. Promote Your TV App

connectSDK

Parameters:
¢ launchSessionm
« listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void getExternallnputList (ExternallnputListListener listener) Get a list of input devices (HDMI, AV, etc) con-
nected to the device

Related capabilities:
* ExternalInputControl.List
Parameters:
* listener — (optional) ExternallnputListListener with methods to be called on success or failure

void setExternallnput (ExternallnputInfo input, ResponseListener <Object> listener) Switch to the specified ex-
ternal input

Related capabilities:

¢ ExternalInputControl.Set
Parameters:

e input

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

KeyControl

com.connectsdk.service.capability.KeyControl
extends CapabilityMethods

The KeyControl capability serves to define the methods required for normalizing common key commands (up, down,
left right, ok, back, home, key code).

Properties

final String Any = “KeyControl.Any”
final String Up = “KeyControl.Up”

final String Down = “KeyControl.Down”

final String Left = “KeyControl.Left”

final String Right = “KeyControl.Right”

final String OK = “KeyControl.OK”

final String Back = “KeyControl.Back™

final String Home = “KeyControl. Home”

final String Send_Key = “KeyControl.SendKey”
final String KeyCode = “KeyControl.KeyCode”

final String[] Capabilities = { Up, Down, Left, Right, OK, Back, Home,**

5.10. API References 181

connectSDK

Inner Classes

* KeyCode

Methods

KeyControl getKeyControl ()
CapabilityPriorityLevel getKeyControlCapabilityLevel ()
void up (ResponseListener <Object> listener) Sends the up button key code to the TV.
Related capabilities:
e KeyControl.Up
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void down (ResponseListener <Object> listener) Sends the down button key code to the TV.
Related capabilities:
* KeyControl.Down
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void left (ResponseListener <Object> listener) Sends the left button key code to the TV.
Related capabilities:
¢ KeyControl.Left
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void right (ResponseListener <Object> listener) Sends the right button key code to the TV.
Related capabilities:
* KeyControl.Right
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void ok (ResponseListener <Object> listener) Sends the OK button key code to the TV.
Related capabilities:
¢ KeyControl.OK
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void back (ResponseListener <Object> listener) Sends the back button key code to the TV.
Related capabilities:
e KeyControl.Back

Parameters:

182 Chapter 5. Promote Your TV App

connectSDK

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void home (ResponseListener <Object> listener) Sends the home button key code to the TV.
Related capabilities:
* KeyControl.Home
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void sendKeyCode (KeyCode keycode, ResponseListener <Object> listener) Sends a key code value to the TV.
Related capabilities:
* KeyControl.Send.KeyCode
Parameters:
* keycode

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

Launcher

com.connectsdk.service.capability.Launcher
extends CapabilityMethods

The Launcher capability protocol serves to define the methods required for normalizing the launching of apps. It
allows for in-built support for certain common launch types (deep-linking to YouTube, Netflix, Hulu, browser, etc) as
well as by (platform-specific) app id.

Properties

final String Any = “Launcher.Any”

final String Application = “Launcher.App”

final String Application_Params = “Launcher.App.Params”
final String Application_Close = “Launcher.App.Close”
final String Application_List = “Launcher.App.List”

final String Browser = “Launcher.Browser”

final String Browser_Params = “Launcher.Browser.Params”
final String Hulu = “Launcher.Hulu”

final String Hulu_Params = “Launcher.Hulu.Params”

final String Netflix = “Launcher.Netflix”

final String Netflix_Params = “Launcher.Netflix.Params”
final String YouTube = “Launcher. YouTube”

final String YouTube_Params = “Launcher. YouTube.Params”
final String AppStore = “Launcher.AppStore”

final String AppStore_Params = “Launcher. AppStore.Params”

5.10. API References 183

connectSDK

final String AppState = “Launcher.AppState”

final String AppState_Subscribe = “Launcher. AppState.Subscribe”

final String RunningApp = “Launcher.RunningApp”

final String RunningApp_Subscribe = “Launcher.RunningApp.Subscribe”

final String[] Capabilities = { Application, Application_Params, Application_Close, Application_List, Browser,
Browser_Params, Hulu, Hulu_Params, Netflix, Netflix_Params, YouTube, YouTube_Params, AppStore, App-
Store_Params, AppState, AppState_Subscribe, RunningApp, RunningApp_Subscribe }

Inner Classes

* ApplnfoListener

* AppLaunchListener
» AppListListener

* AppState

* AppStateListener

Methods

Launcher getLauncher ()
CapabilityPriorityLevel getLauncherCapabilityLevel ()
void launchAppWithInfo (AppInfo applInfo, AppLaunchListener listener) Launch an application on the device.
Related capabilities:
¢ Launcher.App
* Launcher.App.Params —if launching with params
Parameters:
* applnfo — Applnfo object for the application
* listener — (optional) AppLaunchListener with methods to be called on success or failure

void launchAppWithInfo (AppInfo appInfo, Object params, AppLaunchListener listener) Launch an application
on the device.

Related capabilities:

* Launcher.App

* Launcher.App.Params — if launching with params
Parameters:

* applnfo — Applnfo object for the application

* params

* listener — (optional) AppLaunchListener with methods to be called on success or failure

void launchApp (String appld, AppLaunchListener listener) Launch an application on the device.

Related capabilities:

184 Chapter 5. Promote Your TV App

connectSDK

e Launcher.App
Parameters:
 appld — ID of the application
* listener — (optional) AppLaunchListener with methods to be called on success or failure

void closeApp (LaunchSession launchSession, ResponseListener <Object> listener) Close an application on the
device.

Related capabilities:
¢ Launcher.App.Close
Parameters:
¢ JlaunchSession — LaunchSession of the target app
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getAppList (AppListListener listener) Gets a list of all apps installed on the device.
Related capabilities:
* Launcher.App.List
Parameters:
* listener — (optional) AppListListener with methods to be called on success or failure
void getRunningApp (AppInfoListener listener) Gets an Applnfo object for the current running app on the device.
Related capabilities:
e Launcher.RunningApp
Parameters:
* listener — (optional) AppInfoListener with methods to be called on success or failure

ServiceSubscription <ApplInfoListener> subscribeRunningApp (AppInfoListener listener) Subscribes to changes
of the current running app. Every time the running app changes, the success block will be called with an
Applnfo object for the current running app.

Related capabilities:
* Launcher.RunningApp.Subscribe
Parameters:
* listener — (optional) AppInfoListener with methods to be called on success or failure

void getAppState (LaunchSession launchSession, AppStateListener listener) Gets the target app’s running status
and on-screen visibility.

Related capabilities:
* Launcher.AppState
Parameters:
¢ launchSession — LaunchSession of the target app
* listener — (optional) AppStateListener with methods to be called on success or failure

ServiceSubscription <AppStateListener> subscribeAppState (LaunchSession launchSession, AppStateListener listener)
Subscribes to changes of the state of the target app. Every time the app’s state changes, the success block will
be called with info on the app’s running status and on-screen visibility.

5.10. API References 185

connectSDK

Related capabilities:
* Launcher.AppState.Subscribe
Parameters:
¢ launchSession - LaunchSession of the target app
* listener — (optional) AppStateListener with methods to be called on success or failure

void launchBrowser (String url, AppLaunchListener listener) Launch the web browser. Will launch deep-linked to
provided URL, if supported on the target platform.

Related capabilities:
¢ Launcher.Browser
* Launcher.Browser.Params — if launching with url
Parameters:
e url
* listener — (optional) AppLaunchListener with methods to be called on success or failure

void launchYouTube (String contentld, AppLaunchListener listener) Launch YouTube app. Will launch deep-
linked to provided contentld, if supported on the target platform.

Related capabilities:
¢ Launcher.YouTube
* Launcher.YouTube.Params — if launching with contentld
Parameters:
 contentld — Video id to open
* listener — (optional) AppLaunchListener with methods to be called on success or failure

void launchYouTube (String contentld, float startTime, App LaunchListener listener) Launch YouTube app. Will
launch deep-linked to provided contentld, if supported on the target platform.

Related capabilities:
* Launcher.YouTube
* Launcher.YouTube.Params — if launching with contentld
Parameters:
 contentld — Video id to open
e startTime
¢ listener — (optional) AppLaunchListener with methods to be called on success or failure

void launchNetflix (String contentld, App LaunchListener listener) Launch Netflix app. Will launch deep-linked to
provided contentld, if supported on the target platform.

Related capabilities:

e Launcher.Netflix

* Launcher.Netflix.Params — if launching with contentld
Parameters:

* contentld — Video id to open

186 Chapter 5. Promote Your TV App

connectSDK

* listener — (optional) AppLaunchListener with methods to be called on success or failure

void launchHulu (String contentld, AppLaunchListener listener) Launch Hulu app. Will launch deep-linked to
provided contentld, if supported on the target platform.

Related capabilities:
¢ Launcher.Hulu
* Launcher.Hulu.Params —if launching with contentld
Parameters:
* contentld — Video id to open
* listener — (optional) AppLaunchListener with methods to be called on success or failure

void launchAppStore (String appld, AppLaunchListener listener) Launch the device’s app store app, optionally
deep-linked to a specific app’s page.

Related capabilities:
e Launcher.AppStore
* Launcher.AppStore.Params
Parameters:
* appld — (optional) ID of the application to show in the app store

* listener — (optional) AppLaunchListener with methods to be called on success or failure

MediaControl

com.connectsdk.service.capability.MediaControl
extends CapabilityMethods

The MediaControl capability protocol serves to define the methods required for normalizing the control of media
playback (play, pause, fast forward, etc) as well as obtaining media information (playhead position, duration, etc).

Properties

final String Any = “MediaControl.Any”

final String Play = “MediaControl.Play”

final String Pause = “MediaControl.Pause”

final String Stop = “MediaControl.Stop”

final String Rewind = “MediaControl.Rewind”

final String FastForward = “MediaControl.FastForward”

final String Seek = “MediaControl.Seek”

final String Duration = “MediaControl.Duration”

final String PlayState = “MediaControl.PlayState”

final String PlayState_Subscribe = “MediaControl.PlayState.Subscribe”

final String Position = “MediaControl.Position”

5.10. API References 187

connectSDK

final String Previous = “MediaControl.Previous” This capability is deprecated. Use PlaylistControl.
Previous instead.

final String Next = “MediaControl.Next” This capability is deprecated. Use PlaylistControl.Next instead.
final int PLAYER_STATE_UNKNOWN =0

final int PLAYER_STATE_IDLE =1

final int PLAYER_STATE_PLAYING =2

final int PLAYER_STATE_PAUSED = 3

final int PLAYER_STATE_BUFFERING = 4

final String[] Capabilities = { Play, Pause, Stop, Rewind, FastForward, Seek,

Inner Classes

e DurationListener

PlayStateListener

PlayStateStatus

e PositionListener

Methods

MediaControl getMediaControl () Get MediaControl implementation
Returns: MediaControl
Capability PriorityLevel getMediaControlCapabilityLevel () Get a capability priority for current implementation
Returns: CapabilityPriorityLevel
void play (ResponseListener <Object> listener) Send play command.
Related capabilities:
¢ MediaControl.Play
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void pause (ResponseListener <Object> listener) Send pause command.
Related capabilities:
* MediaControl.Pause
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void stop (ResponseListener <Object> listener) Send play command.
Related capabilities:
* MediaControl.Stop
Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

188 Chapter 5. Promote Your TV App

connectSDK

void rewind (ResponseListener <Object> listener) Send rewind command.
Related capabilities:
* MediaControl.Rewind
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void fastForward (ResponseListener <Object> listener) Send play command.
Related capabilities:
* MediaControl.FastForward
Parameters:
« listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void previous (ResponseListener <Object> listener) This method is deprecated. Use
PlaylistControl::previous (ResponselListener<Object> listener) instead.

Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void next (ResponseListener <Object> listener) This method is deprecated. Use
PlaylistControl: :next (ResponselListener<Object> listener) instead.

Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void seek (long position, ResponseListener <Object> listener) Seeks to a new position within the current media
item

Related capabilities:
¢ MediaControl.Seek
Parameters:
* position — The new position, in milliseconds from the beginning of the stream
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getDuration (DurationListener listener) Get the current media duration in milliseconds
Parameters:
e listener — (optional) DurationListener with methods to be called on success or failure
void getPosition (PositionListener listener) Get the current playback position in milliseconds
Parameters:
* listener — (optional) PositionListener with methods to be called on success or failure
void getPlayState (PlayStateListener listener) Get the current state of playback
Parameters:
* listener — (optional) PlayStateListener with methods to be called on success or failure

ServiceSubscription <PlayStateListener> subscribePlayState (PlayStateListener listener) Subscribe for playback
state changes

Parameters:

5.10. API References 189

connectSDK

* listener — receives play state notifications

Returns: ServiceSubscription<PlayStateListener>

MediaPlayer

com.connectsdk.service.capability.MediaPlayer
extends CapabilityMethods

The MediaPlayer capability protocol serves to define the methods required for displaying media on the device.

Properties

final String Any = “MediaPlayer.Any”

final String Display_Video = “MediaPlayer.Play.Video” This capability is deprecated. Use MediaPlayer.
Play_Video instead.

final String Display_Audio = “MediaPlayer.Play.Audio” This capability is deprecated. Use MediaPlayer.
Play_Audio instead.

final String Display_Image = “MediaPlayer.Display.Image”

final String Play_Video = “MediaPlayer.Play.Video”

final String Play_Audio = “MediaPlayer.Play.Audio”

final String Play_Playlist = “MediaPlayer.Play.Playlist”

final String Close = “MediaPlayer.Close”

final String Loop = “MediaPlayer.Loop”

final String Subtitle_SRT = “MediaPlayer.Subtitle. SRT”

final String Subtitle. WebVTT = “MediaPlayer.Subtitle. WebVTT”

final String MetaData_Title = “MediaPlayer.MetaData.Title”

final String MetaData_Description = “MediaPlayer.MetaData.Description”
final String MetaData_Thumbnail = “MediaPlayer.MetaData.Thumbnail”
final String MetaData_MimeType = “MediaPlayer.MetaData.MimeType”
final String Medialnfo_Get = “MediaPlayer.Medialnfo.Get”

final String Medialnfo_Subscribe = “MediaPlayer.Medialnfo.Subscribe”

final String[] Capabilities = { Display_Image, Play_Video, Play_Audio, Close, MetaData_Title, Meta-
Data_Description, MetaData_Thumbnail, MetaData_MimeType, Medialnfo_Get, Medialnfo_Subscribe }

Inner Classes

e LaunchListener
* MedialnfoListener

* MediaLaunchObject

190 Chapter 5. Promote Your TV App

connectSDK

Methods

MediaPlayer getMediaPlayer ()
CapabilityPriorityLevel getMediaPlayerCapabilityLevel ()
void getMedialnfo (MedialnfoListener listener) Parameters:
* listener — (optional) MedialnfoListener with methods to be called on success or failure
ServiceSubscription <MedialnfoListener> subscribeMedialnfo (MedialnfoListener listener) Parameters:
¢ listener — (optional) MedialnfoListener with methods to be called on success or failure

void displayImage (Medialnfo medialnfo, LaunchListener listener) Display an image on the device. Not all de-
vices support all of the parameters — supply as many as you have available.

Related capabilities:
¢ MediaPlayer.Display.Image
* MediaPlayer.MediaData.Title
* MediaPlayer.MediaData.Description
e MediaPlayer.MediaData.Thumbnail
¢ MediaPlayer.MediaData.MimeType
Parameters:
» medialnfo — Object of Medialnfo class which includes all the information about an image to display.
* listener — (optional) LaunchListener with methods to be called on success or failure

void playMedia (Medialnfo medialnfo, boolean shouldLoop, LaunchListener listener) Play an audio or video file
on the device. Not all devices support all of the parameters — supply as many as you have available.

Related capabilities:
* MediaPlayer.Play.Video
* MediaPlayer.Play.Audio
* MediaPlayer.MediaData.Title
e MediaPlayer.MediaData.Description
e MediaPlayer.MediaData.Thumbnail
* MediaPlayer.MediaData.MimeType
Parameters:
* medialnfo — Object of Medialnfo class which includes all the information about an image to display.
* shouldLoop — Whether to automatically loop playback
e listener — (optional) LaunchListener with methods to be called on success or failure

void closeMedia (LaunchSession launchSession, ResponseListener <Object> listener) Close a running media ses-
sion. Because media is handled differently on different platforms, it is required to keep track of LaunchSession
and MediaControl objects to control that media session in the future. LaunchSession will be required to close
the media and mediaControl will be required to control the media.

Related capabilities:

e MediaPlayer.Close

5.10. API References 191

connectSDK

Parameters:
* launchSession — LaunchSession object for use in closing media instance
« listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void displayImage (String url, String mimeType, String title, String description, String iconSrc, LaunchListener listener)
Display an image on the device. Not all devices support all of the parameters — supply as many as you have
available.

This method is deprecated. Use MediaPlayer::displayImage (MediaInfo medialInfo,
LaunchlListener listener) instead.

Related capabilities:
e MediaPlayer.Display.Image
* MediaPlayer.MediaData.Title
e MediaPlayer.MediaData.Description
e MediaPlayer.MediaData.Thumbnail
e MediaPlayer.MediaData.MimeType
Parameters:
e url
* mimeType — MIME type of the image, for example “image/jpeg”
« title — Title text to display
e description — Description text to display
* iconSrc
¢ listener — (optional) LaunchListener with methods to be called on success or failure

void playMedia (String url, String mimeType, String title, String description, String iconSrc, boolean shouldLoop, LaunchListene
Play an audio or video file on the device. Not all devices support all of the parameters — supply as many as you
have available.

This method is deprecated. Use MediaPlayer::playMedia (MediaInfo mediaInfo, boolean
shouldLoop, LaunchListener listener) instead.

Related capabilities:
* MediaPlayer.Play.Video
* MediaPlayer.Play.Audio
* MediaPlayer.MediaData.Title
e MediaPlayer.MediaData.Description
e MediaPlayer.MediaData.Thumbnail
* MediaPlayer.MediaData.MimeType
Parameters:
e url
* mimeType — MIME type of the video, for example “video/mpeg4”, “audio/mp3”, etc
« title — Title text to display

e description — Description text to display

192 Chapter 5. Promote Your TV App

connectSDK

* iconSrc
* shouldLoop — Whether to automatically loop playback

* listener — (optional) LaunchListener with methods to be called on success or failure

MouseControl

com.connectsdk.service.capability.MouseControl
extends CapabilityMethods

The MouseControl capability serves to define the methods required for normalizing a mouse/trackpad (move/scroll
with relative coordinates and click).

Properties

final String Any = “MouseControl.Any”

final String Connect = “MouseControl.Connect”

final String Disconnect = “MouseControl.Disconnect”
final String Click = “MouseControl.Click”

final String Move = “MouseControl.Move”

final String Scroll = “MouseControl.Scroll”

final String[] Capabilities = { Connect, Disconnect, Click, Move, Scroll }

Methods

MouseControl getMouseControl ()
CapabilityPriorityLevel getMouseControlCapabilityLevel ()

void connectMouse () Establish a connection with the DeviceService’s mouse communication medium (WebSocket,
HTTP, etc). While this step may not be necessary with certain platforms, it is suggested to call it anyways, for
purposes of seamless normalization. Calling connect on a non-connectable protocol will just trigger the success
callback immediately.

Related capabilities:
¢ MouseControl.Connect
void disconnectMouse () Disconnects from the mouse communication medium.
Related capabilities:
* MouseControl.Disconnect
void click () Perform a click action at the current mouse position.
Related capabilities:
* MouseControl.Click
void move (double dx, double dy) Move the mouse by the given distance values.
Related capabilities:

* MouseControl.Move

5.10. API References 193

connectSDK

Parameters:
» dx — Distance to move the mouse on the x-axis relative to its current position
* dy — Distance to move the mouse on the y-axis relative to its current position
void move (PointF distance) Move the mouse by the given distance values.
Related capabilities:
* MouseControl.Move
Parameters:
* distance — Distance to move the mouse relative to its current position
void scroll (double dx, double dy) Scroll by the given distance values.
Related capabilities:
* MouseControl.Scroll
Parameters:
» dx — Distance to scroll the mouse on the x-axis relative to its current position
* dy — Distance to scroll the mouse on the y-axis relative to its current position
void scroll (PointF distance) Scroll by the given distance values.
Related capabilities:
* MouseControl.Scroll
Parameters:

* distance — Distance to scroll relative to current position

PlaylistControl

com.connectsdk.service.capability.PlaylistControl
extends CapabilityMethods

The PlaylistControl capability interface serves to define the methods required for normalizing the control of playlist
(next, previous, jumpToTrack, etc)

Properties

final String Any = “PlaylistControl. Any”

final String JumpToTrack = “PlaylistControl.JumpToTrack”
final String SetPlayMode = “PlaylistControl.SetPlayMode”
final String Previous = “PlaylistControl.Previous”

final String Next = “PlaylistControl.Next”

final String[] Capabilities = { Previous, Next, JumpToTrack, SetPlayMode, JumpToTrack, }

Inner Classes

* PlayMode

194 Chapter 5. Promote Your TV App

connectSDK

Methods

PlaylistControl getPlaylistControl ()
CapabilityPriorityLevel getPlaylistControlCapabilityLevel ()
void previous (ResponseListener <Object> listener) Jump playlist to the previous track.
Play previous track in the playlist
Related capabilities:
e PlaylistControl.Previous
Parameters:
* listener — optional response listener
void next (ResponseListener <Object> listener) Jump playlist to the next track.
Play next track in the playlist
Related capabilities:
e PlaylistControl.Next
Parameters:
* listener — optional response listener
void jumpToTrack (long index, ResponseListener <Object> listener) Jump the playlist to the designated track.
Play a track specified by index in the playlist
Related capabilities:
e PlaylistControl.JumpToTrack
Parameters:
¢ index — index in the playlist, it starts from zero like index of array
* listener — optional response listener
void setPlayMode (PlayMode playMode, ResponseListener <Object> listener) Set order of playing tracks
Parameters:
e playMode

* listener — optional response listener

PowerControl

com.connectsdk.service.capability.PowerControl
extends CapabilityMethods

The PowerControl capability protocol serves to define the methods required for normalizing power off functionality.

5.10. API References 195

connectSDK

Properties

s

final String Any = “PowerControl. Any’
final String Off = “PowerControl. Off”
final String On = “PowerControl.On”
final String[] Capabilities = { Off, On }

Methods

PowerControl getPowerControl ()
CapabilityPriorityLevel getPowerControlCapabilityLevel ()

void powerOff (ResponseListener <Object> listener) Sends a power off signal to the TV. A success message will,
internally, trigger a disconnection with the device.

Related capabilities:
¢ PowerControl.Off
Parameters:
« listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void powerOn (ResponseListener <Object> listener) Parameters:

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

TVControl

com.connectsdk.service.capability.TVControl
extends CapabilityMethods

The TVControl capability protocol serves to define the methods required for normalizing common TV-specific com-
mands (channel up/down, channel list, channel info, etc).

Properties

final String Any = “TVControl.Any”

final String Channel_Get = “TV Control.Channel.Get”

final String Channel_Set = “TVControl.Channel.Set”

final String Channel_Up = “TVControl.Channel.Up”

final String Channel_Down = “TVControl.Channel.Down”

final String Channel_List = “TVControl.Channel.List”

final String Channel_Subscribe = “TV Control.Channel.Subscribe”
final String Program_Get = “T'VControl.Program.Get”

final String Program_List = “TVControl.Program.List”

final String Program_Subscribe = “TVControl.Program.Subscribe”

196 Chapter 5. Promote Your TV App

connectSDK

final String Program_List_Subscribe = “TVControl.Program.List.Subscribe”
final String Get_3D = “TVControl.3D.Get”

final String Set_3D = “TVControl.3D.Set”

final String Subscribe_3D = “TVControl.3D.Subscribe”

final String[] Capabilities = { Channel_Get, Channel_Set, Channel_Up, Channel_Down, Channel_List, Chan-
nel_Subscribe, Program_Get, Program_List, Program_Subscribe, Program_List_Subscribe, Get_3D, Set_3D,
Subscribe_3D }

Inner Classes

e ChannelListener
e ChannelListListener
* ProgramlinfoListener

e ProgramlListListener

State3DModeListener

Methods

TVControl getTVControl ()
CapabilityPriorityLevel getTV ControlCapabilityLevel ()
void channelUp (ResponseListener<Object> listener)
Sends a channel up command to the TV.
Related capabilities:
e TVControl.Channel.Up
Parameters:
» listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void channelDown (ResponseListener <Object> listener)
Sends a channel down command to the TV.
Related capabilities:
e TVControl.Channel.Down
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void setChannel (Channellnfo channelNumber, ResponseListener <Object> listener)
Sets the current channel to the channel provided by the Channellnfo object provided.
Related capabilities:
e TVControl.Channel. Set
Parameters:

¢ channelNumber

5.10. API References 197

connectSDK

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getCurrentChannel (ChannelListener listener)
Gets the current channel info from the TV.
Related capabilities:
e TVControl.Channel.Get
Parameters:
* listener — (optional) ChannelListener with methods to be called on success or failure

ServiceSubscription <ChannelListener> subscribeCurrentChannel (ChannelListener <and-channellistener> lis-
tener)

Subscribes to any changes in the current channel. Each time the channel is changed, the new channel’s
info will be provided to the success callback.

Related capabilities:
e TVControl.Channel.Subscribe
Parameters:
* listener — (optional) ChannelListener with methods to be called on success or failure
void getChannelList (ChannelListListener listener)
Get a list of available channels from the TV.
Related capabilities:
e TVControl.Channel.List
Parameters:
* listener — (optional) ChannelListListener with methods to be called on success or failure
void getProgramlInfo (PrograminfoListener listener)
Gets the current program info from the TV.
Related capabilities:
e TVControl.Program.Get
Parameters:
* listener — (optional) ProgramInfoListener with methods to be called on success or failure
ServiceSubscription <ProgramiInfoListener> subscribeProgramlInfo (PrograminfoListener listener)

Subscribes to any changes in the current program. Each time the channel is changed or a new program
starts, the new program’s info will be provided to the success callback.

Related capabilities:
e TVControl.Program.Subscribe

Parameters:

* listener — (optional) ProgramInfoListener with methods to be called on success or failure
void getProgramlList (ProgramlListListener listener)
Gets a list of all programs scheduled to play on the current channel.

Related capabilities:

198 Chapter 5. Promote Your TV App

connectSDK

e TVControl.Program.List
Parameters:
* listener — (optional) ProgramListListener with methods to be called on success or failure
ServiceSubscription <ProgramListListener> subscribeProgramlList (ProgramlListListener listener)

Subscribes to any changes in the current program. Each time the channel is changed or a new program
starts, the new program’s info will be provided to the success callback.

Related capabilities:
e TVControl.Program.List.Subscribe
Parameters:
* listener — (optional) ProgramListListener with methods to be called on success or failure
void get3DEnabled (State3DModeListener listener)
Gets the current 3D status of the TV.
Related capabilities:
* TVControl.3D.Get
Parameters:
* listener — (optional) State3DModeListener with methods to be called on success or failure
void set3DEnabled (boolean enabled, ResponseListener <Object> listener)
Sets the current 3D status of the TV.
Related capabilities:
e TVControl.3D.Set
Parameters:
¢ enabled — Whether the TV’s 3D mode should be on or off
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
ServiceSubscription <State3DModeListener> subscribe3DEnabled (State3DModeListener listener)
Subscribes to changes in the TV’s 3D status.
Related capabilities:
e TVControl.3D.Subscribe
Parameters:

* listener — (optional) State3DModeListener with methods to be called on success or failure

TextlnputControl

com.connectsdk.service.capability.TextInputControl
extends CapabilityMethods

The TextInputControl capability serves to define the methods required for normalizing common text input commands
(send text, enter, delete, keyboard status).

5.10. API References 199

connectSDK

Properties

final String Any = “TextInputControl.Any”

final String Send = “TextInputControl.Send”

final String Send_Enter = “TextInputControl.Enter”

final String Send_Delete = “TextInputControl.Delete”

final String Subscribe = “TextInputControl.Subscribe”

final String[] Capabilities = { Send, Send_Enter, Send_Delete, Subscribe }

Inner Classes

o TextInputStatusListener

Methods

TextInputControl getTextInputControl ()
CapabilityPriorityLevel getTextInputControlCapabilityLevel ()
ServiceSubscription < TextInputStatusListener> subscribeTextInputStatus (TextInputStatusListener listener)
Subscribe to information about the current text field.
Related capabilities:
* TextInputControl.Subscribe
Parameters:
* listener — (optional) TextInputStatusListener with methods to be called on success or failure
void sendText (String input)
Send text to the current text field.
Related capabilities:
¢ TextInputControl.Send.Text
Parameters:
* input
void sendEnter ()
Send enter key to the current text field.
Related capabilities:
e TextInputControl.Send.Enter
void sendDelete ()
Send delete event to the current text field.
Related capabilities:

e TextInputControl.Send.Delete

200 Chapter 5. Promote Your TV App

connectSDK

ToastControl

com.connectsdk.service.capability. ToastControl
extends CapabilityMethods
The ToastControl capability protocol serves to define the methods required for displaying toast messages on the TV.

Toasts may optionally provide an 80x80 pixel icon in PNG or JPEG format, encoded as base64. The icon will be
displayed alongside the toast message.

Properties

final String Any = “ToastControl.Any”

final String Show_Toast = “ToastControl.Show”

final String Show_Clickable_Toast_App = “ToastControl.Show.Clickable.App”

final String Show_Clickable_Toast_App_Params = “ToastControl.Show.Clickable.App.Params”
final String Show_Clickable_Toast_URL = “ToastControl.Show.Clickable.URL”

final String[] Capabilities = { Show_Toast, Show_Clickable_Toast_App, Show_Clickable_Toast_App_Params,
Show_Clickable_Toast_URL }

Methods

ToastControl getToastControl ()
CapabilityPriorityLevel getToastControlCapabilityLevel ()
void showToast (String message, ResponseListener<Object> listener)
Show a toast on the TV.
Parameters:
* message — Message to display
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void showToast (String message, String iconData, String iconExtension, ResponseListener <Object> listener)
Show a toast on the TV.
Parameters:
* message — Message to display
* iconData — Base-64 encoded JPEG or PNG data
* iconExtension — File extension of icon
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void showClickableToastForApp (String message, AppInfo applnfo, ISONObject params, ResponseListener <Ob-
ject> listener)

Show a toast on the TV and perform an action when the toast is clicked on the TV.
Related capabilities:

* ToastControl.Show.Clickable.App

5.10. API References 201

connectSDK

* ToastControl.Show.Clickable.App.Params
Parameters:
* message — Message to display
* applnfo — ApplInfo for app to launch on click of toast
e params — Launch params for app
» listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void showClickableToastForApp (String message, AppInfo applnfo, JISONObject params, String iconData, String
iconExtension, ResponseListener <Object> listener)

Show a toast on the TV and perform an action when the toast is clicked on the TV.
Related capabilities:
* ToastControl.Show.Clickable.App
* ToastControl.Show.Clickable.App.Params
Parameters:
* message — Message to display
* applnfo — ApplInfo for app to launch on click of toast
e params — Launch params for app
* iconData — Base-64 encoded JPEG or PNG data
* iconExtension — File extension of icon
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void showClickableToastForURL (String message, String url, ResponseListener <Object> listener)
Show a toast on the TV and perform an action when the toast is clicked on the TV.
Related capabilities:
* ToastControl.Show.Clickable.URL
Parameters:
* message — Message to display
e url
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void showClickableToastForURL (String message, String url, String iconData, String iconExtension, ResponseLis-
tener <Object> listener)

Show a toast on the TV and perform an action when the toast is clicked on the TV.
Related capabilities:

* ToastControl.Show.Clickable.URL
Parameters:

* message — Message to display

* url

* iconData — Base-64 encoded JPEG or PNG data

¢ iconExtension — File extension of icon

202 Chapter 5. Promote Your TV App

connectSDK

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

VolumeControl

com.connectsdk.service.capability.VolumeControl
extends CapabilityMethods

The VolumeControl capability protocol serves to define the methods required for normalizing common volume specific
commands (volume up/down, mute, etc).

Properties

final String Any = “VolumeControl.Any”

final String Volume_Get = “VolumeControl.Get”

final String Volume_Set = “VolumeControl.Set”

final String Volume_Up_Down = “VolumeControl.UpDown”
final String Volume_Subscribe = “VolumeControl.Subscribe”
final String Mute_Get = ‘“VolumeControl.Mute.Get”

final String Mute_Set = ‘“VolumeControl.Mute.Set”

final String Mute_Subscribe = “VolumeControl.Mute.Subscribe”

final String[] Capabilities = { Volume_Get, Volume_Set, Volume_Up_Down, Volume_Subscribe, Mute_Get,
Mute_Set, Mute_Subscribe }

Inner Classes

o MutelListener
e VolumelListener
e VolumeStatus

e VolumeStatusListener

Methods

VolumeControl getVolumeControl ()
CapabilityPriorityLevel getVolumeControlCapabilityLevel ()
void volumeUp (ResponseListener<Object> listener)
Sends the volume up command to the device.
Related capabilities:
* VolumeControl.UpDown
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure

void volumeDown (ResponseListener <Object> listener)

5.10. API References 203

connectSDK

Sends the volume down command to the device.
Related capabilities:
* VolumeControl.UpDown
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void setVolume (float volume, ResponseListener <Object> listener)
Set the volume of the device.
Related capabilities:
* VolumeControl.Set
Parameters:
¢ volume — Volume as a float between 0.0 and 1.0
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getVolume (VolumeListener listener)
Get the current volume of the device.
Related capabilities:
* VolumeControl.Get
Parameters:
* listener — (optional) VolumeListener with methods to be called on success or failure
void setMute (boolean isMute, ResponseListener <Object> listener)
Set the current volume.
Related capabilities:
* VolumeControl.Mute. Set
Parameters:
* isMute
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getMute (MuteListener listener)
Get the current mute state.
Related capabilities:
e VolumeControl.Mute.Get
Parameters:
* listener — (optional) MuteListener with methods to be called on success or failure
ServiceSubscription <VolumeListener> subscribeVolume (VolumeListener listener)
Subscribe to the volume on the TV.
Related capabilities:
* VolumeControl.Subscribe

Parameters:

204 Chapter 5. Promote Your TV App

connectSDK

* listener — (optional) VolumeListener with methods to be called on success or failure
ServiceSubscription <MuteListener> subscribeMute (MuteListener listener)
Subscribe to the mute state on the TV.
Related capabilities:
* VolumeControl.Mute.Subscribe
Parameters:

* listener — (optional) MuteListener with methods to be called on success or failure

WebAppLauncher

com.connectsdk.service.capability.WebAppLauncher
extends CapabilityMethods

The WebAppLauncher capability protocol provides capabilities for launching web apps and establishing two-way
communication.

Properties

final String Any = “WebAppLauncher.Any”

final String Launch = “WebAppLauncher.Launch”

final String Launch_Params = “WebAppLauncher.Launch.Params”

final String Message_Send = ‘“WebAppLauncher.Message.Send”

final String Message_Receive = “WebAppLauncher.Message.Receive”

final String Message_Send_JSON = “WebAppLauncher.Message.Send.JSON”’
final String Message_Receive_JSON = “WebAppLauncher.Message.Receive.JSON”
final String Connect = “WebAppLauncher.Connect”

final String Disconnect = “WebAppLauncher.Disconnect”

final String Join = “WebAppLauncher.Join”

final String Close = “WebAppLauncher.Close”

final String Pin = “WebAppLauncher.Pin”

final String[] Capabilities = { Launch, Launch_Params, Message_Send, Message_Receive, Mes-
sage_Send_JSON, Message_Receive_JSON, Connect, Disconnect, Join, Close, Pin }

Methods

WebAppLauncher getWebAppLauncher ()

CapabilityPriorityLevel getWebAppLauncherCapabilityLevel ()

void launchWebApp (String webAppld, LaunchListener listener)
Launch a web application on the TV.

Related capabilities:

5.10. API References 205

connectSDK

* WebAppLauncher.Launch
* WebAppLauncher.Launch.Params —if launching with params
Parameters:
* webAppld — ID of web app assigned by platform vendor
* listener — (optional) LaunchListener with methods to be called on success or failure
void launchWebApp (String webAppld, boolean relaunchlfRunning, LaunchListener listener)
Launch a web application on the TV.
Related capabilities:
* WebAppLauncher.Launch
* WebAppLauncher.Launch.Params — if launching with params
Parameters:
* webAppld — ID of web app assigned by platform vendor
* relaunchIfRunning — If supported on target platform, web app will force relaunch if value true
* listener — (optional) LaunchListener with methods to be called on success or failure
void launchWebApp (String webAppld, ISONObject params, LaunchListener listener)
Launch a web application on the TV.
Related capabilities:
* WebAppLauncher.Launch
e WebAppLauncher.Launch.Params — if launching with params
Parameters:
* webAppld — ID of web app assigned by platform vendor
 params — Dictionary of key/value strings. Not available on all target platforms
* listener — (optional) LaunchListener with methods to be called on success or failure
void launchWebApp (String webAppld, JSONObject params, boolean relaunchifRunning, LaunchListener listener)
Launch a web application on the TV.
Related capabilities:
* WebAppLauncher.Launch
* WebAppLauncher.Launch.Params — if launching with params
Parameters:
* webAppld — ID of web app assigned by platform vendor
» params — Dictionary of key/value strings. Not available on all target platforms
¢ relaunchlfRunning — If supported on target platform, web app will force relaunch if value true
* listener — (optional) LaunchListener with methods to be called on success or failure
void joinWebApp (LaunchSession webAppLaunchSession, LaunchListener listener)

Join an active web app without launching/relaunching. If the app is not running/joinable, the failure block
will be called immediately.

206 Chapter 5. Promote Your TV App

connectSDK

Related capabilities:
* WebAppLauncher. Send
* WebAppLauncher.Receive
Parameters:
» webAppLaunchSession — LaunchSession for the web app to be joined
* listener — (optional) LaunchListener with methods to be called on success or failure
void joinWebApp (String webAppld, LaunchListener listener)

Join an active web app without launching/relaunching. If the app is not running/joinable, the failure block
will be called immediately.

Related capabilities:
* WebAppLauncher. Send
* WebAppLauncher.Receive
Parameters:
» webAppld — Unique identifier for the web app to be joined
* listener — (optional) LaunchListener with methods to be called on success or failure
void closeWebApp (LaunchSession launchSession, ResponseListener <Object> listener)
Closes a web app with the provided LaunchSession.
Related capabilities:
* WebAppLauncher.Close
Parameters:
* launchSession — LaunchSession associated with the web app to be closed
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void pinWebApp (String webAppld, ResponseListener <Object> listener)
Parameters:
* webAppld
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void unPinWebApp (String webAppld, ResponseListener <Object> listener)
Parameters:
* webAppld
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void isWebAppPinned (String webAppld, WebAppPinStatusListener listener)
Parameters:
* webAppld
* listener — (optional) WebAppPinStatusListener with methods to be called on success or failure

ServiceSubscription <WebAppPinStatusListener> subscribelsWebAppPinned (String webAppld, WebAppPinStatus-
Listener listener)

Parameters:

5.10. API References 207

connectSDK

* webAppld

* listener — (optional) WebAppPinStatusListener with methods to be called on success or failure

ScreenMirroringControl

com.connectsdk.service.capability.ScreenMirroringControl
extends CapabilityMethods

The ScreenMirroringControl capability protocol serves to define the methods required for displaying mobile app screen
to LG TV.

Properties

final String Any = “ScreenMirroringControl. Any”’
final String ScreenMirroring = “ScreenMirroringControl.ScreenMirroring”

final String[] Capabilities = { ScreenMirroring }

Inner Classes

* ScreenMirroringStartListener
* ScreenMirroringStopListener
» ScreenMirroringErrorListener

* ScreenMirroringError

Methods

static int getSdkVersion (Context context) Returns the SDK version as an integer. (e.g., 301002)
Parameters:
* context - Application context

static boolean isCompatibleOsVersion () Checks if the OS version can run the screen mirroring function. The
screen mirroring function is supported on Android 10 (Q, API Level 29) or higher.

static boolean isRunning (Context context) Checks if the screen mirroring function is running.
Parameters:
* context - Application context

static boolean isSupportScreenMirroring (String deviceld) Checks if the TV supports the screen mirroring func-
tion. Currently, only webOS22 TVs are supported.

Parameters:
¢ deviceld - Device ID value of the TV

void startScreenMirroring (Context context, Intent projectionData, ScreenMirroringStartListener onStartListener)
Starts the screen mirroring. Each step is passed through the ScreenMirroringStartListener callback. Before
calling this function, user permission for screen capture must be obtained. This data can be passed as an
argument.

208 Chapter 5. Promote Your TV App

connectSDK

Parameters:
e context — Application context
 projectionData - Data to use mediaProjection
* onStartListener - (optional) ScreenMirroringonStartListener with methods to be called on success or failure

void startScreenMirroring (Context context, Intent projectionData, Class secondScreenClass, ScreenMirroringStartListener onS
Starts screen mirroring in the same way as the API above. There is a secondScreenClass parameter for dual
screens.

Parameters:
* context — Application context
* projectionData - Data to use mediaProjection
» secondScreenClass - Screen object to use dual screen
* onStartListener - (optional) ScreenMirroringonStartListener with methods to be called on success or failure

void stopScreenMirroring (Context context, ScreenMirroringStopListener stopListener) Stops the screen mir-
roring. The result is delivered through the ScreenMirroringStopListener callback.

Parameters:
* context — Application context
 stopListener - (optional) ScreenMirroringStopListener with methods to be called on success or failure

void setErrorListener (Context context, ScreenMirroringErrorListener errorListener) Designates a ScreenMir-
roringErrorListener to check if an error occurs during execution.

Parameters:
e context — Application context

« errorListener - ScreenMirroringErrorListener to be called when an error occurs

RemoteCameraControl

com.connectsdk.service.capability.RemoteCameraControl

extends CapabilityMethods

Properties

String Any = “RemoteCameraControl. Any”

String RemoteCamera = “RemoteCameraControl. RemoteCamera”

String[] Capabilities = { RemoteCamera }

int LENS_FACING_FRONT = CameraCharacteristics. LENS_FACING_FRONT
int LENS_FACING_BACK = CameraCharacteristics. LENS_FACING_BACK

5.10. API References 209

connectSDK

Inner Classes

* RemoteCameraStartListener

* RemoteCameraStopListener

* RemoteCameraPlayingListener

* RemoteCameraPropertyChangeListener

e RemoteCameraErrorListener

Methods

static int getSdkVersion (Context context) Returns the SDK version as an integer. (e.g., 301002)
Parameters:
 context - Application context

static boolean isCompatibleOsVersion () Checks if the OS version can run the remote camera function. The remote
camera function is supported on Android 7 (N, API Level 24) or higher.

static boolean isRunning (Context context) Checks if the remote camera function is running.
Parameters:
 context - Application context

static boolean isSupportRemoteCamera (String deviceld) Checks if the TV supports the remote camera function.
Currently, only webOS22 TVs are supported.

Parameters:
¢ deviceld - Device ID value of the TV

void startRemoteCamera (Context context, Surface previewSurface, boolean micMute, int lensFacing, RemoteCameraStartListe
Starts the remote camera. Each step is passed through the RemoteCameraStartListener callback.

Parameters:
* context — Application context
 previewSurface - SurfaceView to show a camera preview
¢ micMute - Microphone mute settings
¢ lensFacing - Camera lens direction
* startListener - (optional) RemoteCameraStartListener with methods to be called on success or failure

void stopRemoteCamera (Context context, RemoteCameraStopListener stopListener); Stops the remote camera.
The result is passed through the Remote CameraStopListener callback.

Parameters:
* context — Application context
e stopListener - (optional) RemoteCameraStopListener with methods to be called on success or failure
void setMicMute (Context context, boolean micMute) Sets the mute function of the microphone.
Parameters:
* context - Application context

* micMute - Microphone mute settings

210 Chapter 5. Promote Your TV App

connectSDK

void setLensFacing (Context context, int lensFacing) Sets the front/rear camera lens use.
Parameters:
* context - Application context
¢ lensFacing - Camera lens direction

void setCameraPlayingListener (Context context, RemoteCameraPlayingListener playingListener) Calls when
starting play by selecting a remote camera on the TV.

Parameters:
 context - Application context
* playingListener - RemoteCameraPlayingListener to be called when the camera playback starts on the TV

void setPropertyChangeListener (Context context, RemoteCameraPropertyChangeListener propertyChangelListener)
Calls when camera properties such as brightness and white balance are changed.

Parameters:
e context - Application context

» propertyChangeListener - RemoteCameraPropertyChangeListener to be called when camera properties are
changed on the TV

void setErrorListener (Context context, ScreenMirroringErrorListener errorListener) Calls when an error oc-
curs while running the remote camera.

Parameters:
* context — Application context

¢ errorListener - RemoteCameraErrorListener to be called when an error occurs

5.10.5 Capability Listeners

ApplnfolListener

com.connectsdk.service.capability.Launcher.AppInfolistener
extends ResponseListener
Success listener that is called upon requesting info about the current running app.

Passes an AppInfo object containing info about the running app

Inherited Methods

void onSuccess (T object) Returns the success of the call of type T.
Parameters:
* object — Response object, can be any number of object types, depending on the protocol/capability/etc

void onError (ServiceCommandError error) Method to return the error that was generated. Will pass an error object
with a helpful status code and error message.

Parameters:

* error — ServiceCommandError describing the error

5.10. API References 211

connectSDK

AppLaunchlListener

com.connectsdk.service.capability.Launcher.AppLaunchListener
extends ResponseListener
Success listener that is called upon successfully launching an app.

Passes a LaunchSession Object containing important information about the app’s launch session

Inherited Methods

void onSuccess (T object) Returns the success of the call of type T.
Parameters:
* object — Response object, can be any number of object types, depending on the protocol/capability/etc

void onError (ServiceCommandError error) Method to return the error that was generated. Will pass an error object
with a helpful status code and error message.

Parameters:

e error — ServiceCommandError describing the error

ApplListListener

com.connectsdk.service.capability.Launcher.AppListListener
extends ResponselListener
Success block that is called upon successfully getting the app list.

Passes a List containing an Applnfo for each available app on the device

Inherited Methods

void onSuccess (T object) Returns the success of the call of type T.
Parameters:
* object — Response object, can be any number of object types, depending on the protocol/capability/etc

void onError (ServiceCommandError error) Method to return the error that was generated. Will pass an error object
with a helpful status code and error message.

Parameters:

e error — ServiceCommandError describing the error

AppStateListener

com.connectsdk.service.capability.Launcher.AppStatelListener
extends ResponselListener
Success block that is called upon successfully getting an app’s state.

Passes an AppState object which contains information about the running app.

212 Chapter 5. Promote Your TV App

connectSDK

Inherited Methods

void onSuccess (T object) Returns the success of the call of type T.
Parameters:
* object — Response object, can be any number of object types, depending on the protocol/capability/etc

void onError (ServiceCommandError error) Method to return the error that was generated. Will pass an error object
with a helpful status code and error message.

Parameters:

e error — ServiceCommandError describing the error

ChannelListListener

com.connectsdk.service.capability.TVControl.ChannellListListener
extends ResponseListener
Success block that is called upon successfully getting the channel list.

Passes a List of ChannelList objects for each available channel on the TV

Inherited Methods

void onSuccess (T object) Returns the success of the call of type T.
Parameters:
* object — Response object, can be any number of object types, depending on the protocol/capability/etc

void onError (ServiceCommandError error) Method to return the error that was generated. Will pass an error object
with a helpful status code and error message.

Parameters:

* error — ServiceCommandError describing the error

ChannelListener

com.connectsdk.service.capability.TVControl.ChannellListener
extends ResponseListener
Success block that is called upon successfully getting the current channel’s information.

Passes a Channellnfo object containing information about the current channel

Inherited Methods

void onSuccess (T object) Returns the success of the call of type T.
Parameters:

* object — Response object, can be any number of object types, depending on the protocol/capability/etc

5.10. API References 213

connectSDK

void onError (ServiceCommandError error) Method to return the error that was generated. Will pass an error object
with a helpful status code and error message.

Parameters:

e error — ServiceCommandError describing the error

DurationListener

com.connectsdk.service.capability.MediaControl.DurationListener
extends ResponseListener
Success block that is called upon successfully getting the media file’s duration.

Passes the duration of the current media file, in seconds

Inherited Methods

void onSuccess (T object) Returns the success of the call of type T.
Parameters:
* object — Response object, can be any number of object types, depending on the protocol/capability/etc

void onError (ServiceCommandError error) Method to return the error that was generated. Will pass an error object
with a helpful status code and error message.

Parameters:

* error — ServiceCommandError describing the error

ErrorListener

com.connectsdk.service.capability.listeners.ErrorListener

Generic asynchronous operation response error handler block. In all cases, you will get a valid ServiceCommandError
object. Connect SDK will make all attempts to give you the lowest-level error possible. In cases where an error is gen-
erated by Connect SDK, an enumerated error code (ConnectStatusCode) will be present on the ServiceCommandError
object.

Low-level error example

Situation
Connect SDK receives invalid XML from a device, generating a parsing error
Result

Connect SDK will call the ErrorListener and pass off the ServiceCommandError generated during parsing of the XML.

High-level error example

Situation
An invalid value is passed to a device capability method

Result

214 Chapter 5. Promote Your TV App

connectSDK

The capability method will immediately invoke the ErrorListener and pass off an ServiceCommandError object with
a status code of ConnectStatusCodeArgumentError.

¢ error

ServiceCommandError object describing the nature of the problem. Error descriptions are not local-
ized and mostly intended for developer use. It is not recommended to display most error descriptions
in UI elements.

Methods

void onError (ServiceCommandError error) Method to return the error that was generated. Will pass an error object
with a helpful status code and error message.

Parameters:

e error — ServiceCommandError describing the error

ExternallnputListListener

com.connectsdk.service.capability.ExternalInputControl.ExternalInputListListener
extends ResponselListener
Success block that is called upon successfully getting the external input list.

Passes a list containing an ExternallnputInfo object for each available external input on the device

Inherited Methods

void onSuccess (T object) Returns the success of the call of type T.
Parameters:
* object — Response object, can be any number of object types, depending on the protocol/capability/etc

void onError (ServiceCommandError error) Method to return the error that was generated. Will pass an error object
with a helpful status code and error message.

Parameters:

e error — ServiceCommandError describing the error

MedialnfoListener
com.connectsdk.service.capability.MediaPlayer.MediaInfolistener

extends ResponselListener

Inherited Methods

void onSuccess (T object) Returns the success of the call of type T.
Parameters:

* object — Response object, can be any number of object types, depending on the protocol/capability/etc

5.10. API References 215

connectSDK

void onError (ServiceCommandError error) Method to return the error that was generated. Will pass an error object
with a helpful status code and error message.

Parameters:

e error — ServiceCommandError describing the error

MediaPlayer.LaunchListener

com.connectsdk.service.capability.MediaPlayer.LaunchListener
extends ResponseListener
Success block that is called upon successfully playing/displaying a media file.

Passes a MedialLaunchObject which contains the objects for controlling media playback.

Inherited Methods

void onSuccess (T object) Returns the success of the call of type T.
Parameters:
* object — Response object, can be any number of object types, depending on the protocol/capability/etc

void onError (ServiceCommandError error) Method to return the error that was generated. Will pass an error object
with a helpful status code and error message.

Parameters:

e error — ServiceCommandError describing the error

MuteListener

com.connectsdk.service.capability.VolumeControl.MutelListener
extends ResponselListener
Success block that is called upon successfully getting the device’s system mute status.

Passes current system mute status

Inherited Methods

void onSuccess (T object) Returns the success of the call of type T.
Parameters:
* object — Response object, can be any number of object types, depending on the protocol/capability/etc

void onError (ServiceCommandError error) Method to return the error that was generated. Will pass an error object
with a helpful status code and error message.

Parameters:

e error — ServiceCommandError describing the error

216 Chapter 5. Promote Your TV App

connectSDK

PlayStateListener

com.connectsdk.service.capability.MediaControl.PlayStateListener
extends ResponseListener
Success block that is called upon any change in a media file’s play state.

Passes a PlayStateStatus enum of the current media file

Inherited Methods

void onSuccess (T object) Returns the success of the call of type T.
Parameters:
* object — Response object, can be any number of object types, depending on the protocol/capability/etc

void onError (ServiceCommandError error) Method to return the error that was generated. Will pass an error object
with a helpful status code and error message.

Parameters:

e error — ServiceCommandError describing the error

PositionListener

com.connectsdk.service.capability.MediaControl.PositionListener
extends ResponselListener
Success block that is called upon successfully getting the media file’s current playhead position.

Passes the position of the current playhead position of the current media file, in seconds

Inherited Methods

void onSuccess (T object) Returns the success of the call of type T.
Parameters:
* object — Response object, can be any number of object types, depending on the protocol/capability/etc

void onError (ServiceCommandError error) Method to return the error that was generated. Will pass an error object
with a helpful status code and error message.

Parameters:

e error — ServiceCommandError describing the error

PrograminfoListener

com.connectsdk.service.capability.TVControl.ProgramInfolistener
extends ResponselListener
Success block that is called upon successfully getting the current program’s information.

Passes a ProgramInfo object containing information about the current program

5.10. API References 217

connectSDK

Inherited Methods

void onSuccess (T object) Returns the success of the call of type T.
Parameters:
* object — Response object, can be any number of object types, depending on the protocol/capability/etc

void onError (ServiceCommandError error) Method to return the error that was generated. Will pass an error object
with a helpful status code and error message.

Parameters:

e error — ServiceCommandError describing the error

ProgramListListener

com.connectsdk.service.capability.TVControl.ProgramListListener
extends ResponseListener
Success block that is called upon successfully getting the program list for the current channel.

Passes a ProgramList containing a ProgramInfo object for each available program on the TV’s current channel

Inherited Methods

void onSuccess (T object)
Returns the success of the call of type T.
Parameters:

* object — Response object, can be any number of object types, depending on the proto-
col/capability/etc

void onError (ServiceCommandError error)

Method to return the error that was generated. Will pass an error object with a helpful status code and
error message.

Parameters:

* error — ServiceCommandError describing the error

ResponseListener

com.connectsdk.service.capability.listeners.ResponselListener
extends ErrorListener

Generic asynchronous operation response success handler block. If there is any response data to be processed, it will
be provided via the responseObject parameter.

* responseObject Contains the output data as a generic object reference. This value may be any of a number of
types as defined by T in subclasses of ResponseListener. It is also possible that responseObject will be nil
for operations that don’t require data to be returned (move mouse, send key code, etc).

218 Chapter 5. Promote Your TV App

connectSDK

Methods

void onSuccess (T object)
Returns the success of the call of type T.
Parameters:

* object — Response object, can be any number of object types, depending on the proto-
col/capability/etc

Inherited Methods

void onError (ServiceCommandError error)

Method to return the error that was generated. Will pass an error object with a helpful status code and
error message.

Parameters:

¢ error — ServiceCommandError describing the error

State3DModeListener

com.connectsdk.service.capability.TVControl.State3DModelListener
extends ResponselListener
Success block that is called upon successfully getting the TV’s 3D mode

Passes a Boolean to see Whether 3D mode is currently enabled on the TV

Inherited Methods

void onSuccess (T object)
Returns the success of the call of type T.
Parameters:

* object — Response object, can be any number of object types, depending on the proto-
col/capability/etc

void onError (ServiceCommandError error)

Method to return the error that was generated. Will pass an error object with a helpful status code and
error message.

Parameters:

* error — ServiceCommandError describing the error

TextInputStatusListener

com.connectsdk.service.capability.TextInputControl.TextInputStatusListener
extends ResponseListener

Response block that is fired on any change of keyboard visibility.

5.10. API References 219

connectSDK

Passes TextInputStatusInfo object that provides keyboard type & visibility information

Inherited Methods

void onSuccess (T object)
Returns the success of the call of type T.
Parameters:

* object — Response object, can be any number of object types, depending on the proto-
col/capability/etc

void onError (ServiceCommandError error)

Method to return the error that was generated. Will pass an error object with a helpful status code and
error message.

Parameters:

¢ error — ServiceCommandError describing the error

VolumelListener

com.connectsdk.service.capability.VolumeControl.VolumeListener
extends ResponseListener
Success block that is called upon successfully getting the device’s system volume.

Passes the current system volume, value is a float between 0.0 and 1.0

Inherited Methods

void onSuccess (T object)
Returns the success of the call of type T.
Parameters:

* object — Response object, can be any number of object types, depending on the proto-
col/capability/etc

void onError (ServiceCommandError error)

Method to return the error that was generated. Will pass an error object with a helpful status code and
error message.

Parameters:

* error — ServiceCommandError describing the error

VolumeStatusListener

com.connectsdk.service.capability.VolumeControl.VolumeStatusListener
extends ResponselListener
Success block that is called upon successfully getting the device’s system volume status.

Passes current system mute status

220 Chapter 5. Promote Your TV App

connectSDK

Inherited Methods

void onSuccess (T object)
Returns the success of the call of type T.
Parameters:

* object — Response object, can be any number of object types, depending on the proto-
col/capability/etc

void onError (ServiceCommandError error)

Method to return the error that was generated. Will pass an error object with a helpful status code and
error message.

Parameters:

* error — ServiceCommandError describing the error

ScreenMirroringStartListener

com.connectsdk.service.capability.ScreenMirroringControl.
ScreenMirroringStartListener

Methods

void onPairing () Calls for pairing. Paring is required when connecting to a TV for the first time. When a paring
callback occurs, the app must notify the user by displaying a pop-up with information.

void onStart (boolean result, SecondScreen secondScreen) Calls when screen mirroring starts. The mirroring start
result is passed as a result parameter.

Parameters:
e result - Screen mirroring start result

¢ secondScreen - Virtual second screen for dual screen

ScreenMirroringStopListener

com.connectsdk.service.capability.ScreenMirroringControl.
ScreenMirroringStopListener

Method

void onStop (boolean result) Calls when the remote camera is stopped. Returns true if the screen mirroring has been
stopped normally and returns false in the following cases.

e If screen mirroring is not running
* Other parameter abnormalities
Parameters:

e result - Screen mirroring stop result

5.10. API References 221

connectSDK

ScreenMirroringErrorListener

com.connectsdk.service.capability.ScreenMirroringControl.
ScreenMirroringErrorListener

Method

void onError (ScreenMirroringError ScreenMirroringError) Calls when an error occurs during execution. For
error types, refer to ScreenMirroringError.

Parameters:

» ScreenMirroringError - Screen mirroring error

RemoteCameraStartListener

com.connectsdk.service.capability.RemoteCameraControl.RemoteCameraStartListener

Methods

void onPairing () Calls for paring. Paring is required when connecting to a TV for the first time. When a paring
callback occurs, the app must notify the user by displaying a pop-up with information.

void onStart (boolean result) Calls when the remote camera is connected to the TV. In this state, the remote camera
is only connected to the TV, and the camera screen is not displayed.

Parameters:

¢ result - Remote camera start result

RemoteCameraStopListener

com.connectsdk.service.capability.RemoteCameraControl.RemoteCameraStopListener

Method

void onStop (boolean result) Calls when the remote camera is stopped. Returns true if the remote camera has been
stopped normally and returns false in the following cases.

* If the remote camera is not running
¢ Other parameter abnormalities
Parameters:

e result - Remote camera stop result

RemoteCameraPropertyChangeListener

com.connectsdk.service.capability.RemoteCameraControl.RemoteCameraPropertyChangelListener

222 Chapter 5. Promote Your TV App

connectSDK

Method

void onChange (RemoteCameraProperty property) Calls when a camera setting such as brightness or AWB on the
TV is changed. For the property types, refer to RemoteCameraProperty.

Parameters:

 property - Remote camera property

RemoteCameraErrorListener

com.connectsdk.service.capability.RemoteCameraControl.RemoteCameraErrorListener

Method

void onError (RemoteCameraError error) Calls when an error occurs during execution. For error types, refer to
RemoteCameraError.

Parameters:

¢ error - Remote camera error

5.10.6 Errors

FireTVServiceError

com.connectsdk.service.command.FireTVServiceError
extends ServiceCommandError

This class implements an exception for FireTVService

Methods

FireTVServiceError (String message) Parameters:
* message

FireTVServiceError (String message, Throwable ¢) Parameters:
* message

*c

Inherited Methods

ServiceCommandError ()
int getCode ()
Object getPayload ()

static ServiceCommandError notSupported () Create an error which indicates that feature is not supported by a
service

Returns: NotSupportedServiceCommandError

5.10. API References 223

connectSDK

static ServiceCommandError getError (int code) Create an error from HTTP response code
Parameters:
* code — HTTP response code

Returns: ServicecCommandError

NotSupportedServiceCommandError

com.connectsdk.service.command.NotSupportedServiceCommandError
extends ServiceCommandError

This class defines an Error which is thrown if feature is not supported by a service implementation

Inherited Methods

ServiceCommandError ()
int getCode ()
Object getPayload ()

static ServiceCommandError notSupported () Create an error which indicates that feature is not supported by a
service

Returns: NotSupportedServiceCommandError
static ServiceCommandError getError (int code) Create an error from HTTP response code
Parameters:
e code — HTTP response code

Returns: ServicecCommandError

ServiceCommandError

com.connectsdk.service.command.ServiceCommandError

This class implements base service error which is based on HTTP response codes

Methods

ServicecCommandError ()
ServiceCommandError (String detailMessage)
Parameters:
* detailMessage
ServiceCommandError (int code, String detailMessage)
Parameters:
* code
* detailMessage

ServiceCommandError (int code, String desc, Object payload)

224 Chapter 5. Promote Your TV App

connectSDK

Parameters:
* code
* desc
* payload
int getCode ()
Object getPayload ()
static ServiceCommandError notSupported ()
Create an error which indicates that feature is not supported by a service
Returns: NotSupportedServiceCommandError
static ServiceCommandError getError (int code)
Create an error from HTTP response code
Parameters:
e code — HTTP response code

Returns: ServicecCommandError

5.10.7 Sessions

LaunchSession

com.connectsdk.service.sessions.LaunchSession

Any time anything is launched onto a first screen device, there will be important session information that needs to be
tracked. LaunchSession will track this data, and must be retained to perform certain actions within the session.

Inner Classes

* LaunchSessionType

Methods

LaunchSession ()
String getAppld () System-specific, unique ID of the app (ex. youtube.leanback.v4, 0000134, hulu)

void setAppld (String appld) Sets the system-specific, unique ID of the app (ex. youtube.leanback.v4, 0000134,
hulu)

Parameters:
* appld — Id of the app
String getAppName () User-friendly name of the app (ex. YouTube, Browser, Hulu)
void setAppName (String appName) Sets the user-friendly name of the app (ex. YouTube, Browser, Hulu)
Parameters:

* appName — Name of the app

5.10. API References 225

connectSDK

String getSessionld () Unique ID for the session (only provided by certain protocols)
void setSessionld (String sessionld) Sets the session id (only provided by certain protocols)
Parameters:
* sessionld — Id of the current session
DeviceService getService () DeviceService responsible for launching the session.
void setService (DeviceService service) DeviceService responsible for launching the session.
Parameters:
* service — Sets the DeviceService
Object getRawData () Raw data from the first screen device about the session. In most cases, this is a JSONObject.

void setRawData (Object rawData) Sets the raw data from the first screen device about the session. In most cases,
this is a JSONODbject.

Parameters:
¢ rawData — Sets the raw data

LaunchSessionType getSessionType () When closing a LaunchSession, the DeviceService relies on the sessionType
to determine the method of closing the session.

void setSessionType (LaunchSessionType sessionType) Sets the LaunchSessionType of this LaunchSession.
Parameters:
* sessionType — The type of LaunchSession
void close (ResponseListener <Object> listener) Close the app/media associated with the session.
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
boolean equals (Object launchSession) Compares two LaunchSession objects.
Parameters:
* launchSession — LaunchSession object to compare.
Returns: true if both LaunchSession id and sessionld values are equal

static LaunchSession launchSessionForAppld (String appld) Instantiates a LaunchSession object for a given app
ID.

Parameters:

 appld — System-specific, unique ID of the app

Inherited Methods

JSONObject toJSONODbject ()
void fromJSONODbject (JSONObject obj) Parameters:
* obj

226 Chapter 5. Promote Your TV App

connectSDK

LaunchSessionType

com.connectsdk.service.sessions.LaunchSession.LaunchSessionType

LaunchSession type is used to help DeviceService’s know how to close a LunchSession.

Properties

Unknown Unknown LaunchSession type, may be unable to close this launch session

App LaunchSession represents a launched app

ExternallnputPicker LaunchSession represents an external input picker that was launched
Media LaunchSession represents a media app

WebApp LaunchSession represents a web app

StatusListener

com.connectsdk.service.sessions.WebAppSession.StatusListener
extends ResponselListener
Success block that is called upon successfully getting a web app’s status.

Passes a WebAppStatus of the current running & foreground status of the web app

Inherited Methods

void onSuccess (T object)
Returns the success of the call of type T.
Parameters:

* object — Response object, can be any number of object types, depending on the proto-
col/capability/etc

void onError (ServiceCommandError error)

Method to return the error that was generated. Will pass an error object with a helpful status code and
error message.

Parameters:

¢ error — ServiceCommandError describing the error

WebAppPinStatusListener

com.connectsdk.service.sessions.WebAppSession.WebAppPinStatusListener
extends ResponseListener
Success block that is called upon successfully getting a web app’s status.

 status The current running & foreground status of the web app

5.10. API References 227

connectSDK

Inherited Methods

void onSuccess (T object)
Returns the success of the call of type T.
Parameters:

* object — Response object, can be any number of object types, depending on the proto-
col/capability/etc

void onError (ServiceCommandError error)

Method to return the error that was generated. Will pass an error object with a helpful status code and
error message.

Parameters:

* error — ServiceCommandError describing the error

WebAppSession

com.connectsdk.service.sessions.WebAppSession

Overview When a web app is launched on a first screen device, there are

certain tasks that can be performed with that web app. WebAppSession serves as a second screen reference of the web
app that was launched. It behaves similarly to LaunchSession, but is not nearly as static.

In Depth On top of maintaining session information (contained in the

launchSession property), WebAppSession provides access to a number of capabilities. - MediaPlayer - MediaControl
- Bi-directional communication with web app

MediaPlayer and MediaControl are provided to allow for the most common first screen use cases a media player
(audio, video, & images).

The Connect SDK JavaScript Bridge has been produced to provide normalized support for these capabilities across
protocols (Chromecast, webOS, etc).

Properties

LaunchSession launchSession LaunchSession object containing key session information. Much of this information
is required for web app messaging & closing the web app.

Inner Classes

* LaunchListener <and-webappsession-launchlistener>
o StatusListener <and-statuslistener>
o WebAppPinStatusListener <and-webapppinstatuslistener>

» WebAppStatus <and-webappstatus>

228 Chapter 5. Promote Your TV App

connectSDK

Methods

WebAppSession (LaunchSession launchSession, DeviceService service)
Instantiates a WebAppSession object with all the information necessary to interact with a web app.
Parameters:
¢ launchSession — LaunchSession containing info about the web app session
* service — DeviceService that was responsible for launching this web app
ServiceSubscription <MessageListener> subscribeWebAppStatus (MessageListener listener)
Subscribes to changes in the web app’s status.
Parameters:
* listener — (optional) MessageListener to be called on app status change
void connect (ResponseListener <Object> connectionListener)
Establishes a communication channel with the web app.
Parameters:
* connectionListener — (optional) ResponseListener to be called on success
void join (ResponseListener <Object> connectionListener)
Establishes a communication channel with a currently running web app.
Parameters:
* connectionListener
void disconnectFromWebApp ()
Closes any open communication channel with the web app.
void pinWebApp (String webAppld, ResponseListener <Object> listener)
Pin the web app on the launcher.
Parameters:
* webAppld
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void unPinWebApp (String webAppld, ResponseListener <Object> listener)
UnPin the web app on the launcher.
Parameters:
* webAppld — NSString webAppld to be unpinned.
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void isWebAppPinned (String webAppld, WebAppPinStatusListener listener)
To check if the web app is pinned or not
Parameters:
* webAppld

* listener — (optional) WebAppPinStatusListener with methods to be called on success or failure

5.10. API References 229

connectSDK

ServiceSubscription <WebAppPinStatusListener> subscribelsWebAppPinned (String webAppld, WebAppPinStatus-
Listener listener)

Subscribe to check if the web app is pinned or not
Parameters:
* webAppld
* listener — (optional) WebAppPinStatusListener with methods to be called on success or failure
void close (ResponseListener <Object> listener)
Closes the web app on the first screen device.
Parameters:
» listener — (optional) ResponseListener to be called on success
void sendMessage (String message, ResponseListener <Object> listener)

Sends a simple string to the web app. The Connect SDK JavaScript Bridge will receive this message and
hand it off as a string object.

Parameters:
* message
* listener — (optional) ResponseListener to be called on success
void sendMessage (JSONObject message, ResponseListener <Object> listener)

Sends a JSON object to the web app. The Connect SDK JavaScript Bridge will receive this message and
hand it off as a JavaScript object.

Parameters:
* message
» listener — (optional) ResponseListener< Object > with methods to be called on success or failure
WebAppSessionListener getWebAppSessionListener ()

When messages are received from a web app, they are parsed into the appropriate object type (string vs
JSON/NSDictionary) and routed to the WebAppSessionListener.

void setWebAppSessionListener (WebAppSessionListener listener)

When messages are received from a web app, they are parsed into the appropriate object type (string vs
JSON/NSDictionary) and routed to the WebAppSessionListener.

Parameters:

* listener — WebAppSessionListener to be called when messages are received from the web app

Inherited Methods

MediaControl getMediaControl ()
Get MediaControl implementation
Returns: MediaControl

CapabilityPriorityLevel getMediaControl CapabilityLevel ()

230 Chapter 5. Promote Your TV App

connectSDK

Get a capability priority for current implementation
Returns: CapabilityPriorityLevel
void play (ResponseListener <Object> listener)
Send play command.
Related capabilities:
* MediaControl.Play
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void pause (ResponseListener <Object> listener)
Send pause command.
Related capabilities:
* MediaControl.Pause
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void stop (ResponseListener <Object> listener)
Send play command.
Related capabilities:
* MediaControl.Stop
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void rewind (ResponseListener <Object> listener)
Send rewind command.
Related capabilities:
* MediaControl.Rewind
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void fastForward (ResponseListener <Object> listener)
Send play command.
Related capabilities:
* MediaControl.FastForward
Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void previous (ResponseListener <Object> listener)

This method is deprecated. Use PlaylistControl: :previous (ResponselListener<Object>
listener) instead.

Parameters:

5.10. API References 231

connectSDK

* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void next (ResponseListener <Object> listener)

This method is deprecated. Use PlaylistControl::next (ResponselListener<Object>
listener) instead.

Parameters:
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void seek (long position, ResponseListener <Object> listener)
Seeks to a new position within the current media item
Related capabilities:
* MediaControl. Seek
Parameters:
* position — The new position, in milliseconds from the beginning of the stream
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
void getDuration (DurationListener listener)
Get the current media duration in milliseconds
Parameters:
* listener — (optional) DurationListener with methods to be called on success or failure
void getPosition (PositionListener listener)
Get the current playback position in milliseconds
Parameters:
* listener — (optional) PositionListener with methods to be called on success or failure
void getPlayState (PlayStateListener listener)
Get the current state of playback
Parameters:
* listener — (optional) PlayStateListener with methods to be called on success or failure
ServiceSubscription <PlayStateListener> subscribePlayState (PlayStateListener listener)
Subscribe for playback state changes
Parameters:
* listener — receives play state notifications
Returns: ServiceSubscription<PlayStateListener>
MediaPlayer getMediaPlayer ()
CapabilityPriorityLevel getMediaPlayerCapabilityLevel ()
void getMedialnfo (MedialnfoListener listener)
Parameters:
* listener — (optional) MedialnfoListener with methods to be called on success or failure

ServiceSubscription <MedialnfoListener> subscribeMedialnfo (MedialnfoListener listener)

232 Chapter 5. Promote Your TV App

connectSDK

Parameters:
* listener — (optional) MedialnfoListener with methods to be called on success or failure
void displayImage (Medialnfo medialnfo, LaunchListener listener)

Display an image on the device. Not all devices support all of the parameters — supply as many as you
have available.

Related capabilities:
* MediaPlayer.Display.Image
* MediaPlayer.MediaData.Title
* MediaPlayer.MediaData.Description
* MediaPlayer.MediaData.Thumbnail
* MediaPlayer.MediaData.MimeType
Parameters:

* medialnfo — Object of Medialnfo class which includes all the information about an image to
display.

* listener — (optional) LaunchListener with methods to be called on success or failure
void playMedia (Medialnfo medialnfo, boolean shouldLoop, LaunchListener listener)

Play an audio or video file on the device. Not all devices support all of the parameters — supply as many
as you have available.

Related capabilities:

* MediaPlayer.Play.Video

* MediaPlayer.Play.Audio

* MediaPlayer.MediaData.Title

* MediaPlayer.MediaData.Description

* MediaPlayer.MediaData.Thumbnail

* MediaPlayer.MediaData.MimeType
Parameters:

* medialnfo — Object of Medialnfo class which includes all the information about an image to
display.

* shouldLoop — Whether to automatically loop playback
* listener — (optional) LaunchListener with methods to be called on success or failure
void closeMedia (LaunchSession launchSession, ResponseListener <Object> listener)

Close a running media session. Because media is handled differently on different platforms, it is required
to keep track of LaunchSession and MediaControl objects to control that media session in the future.
LaunchSession will be required to close the media and mediaControl will be required to control the
media.

Related capabilities:
* MediaPlayer.Close

Parameters:

5.10. API References 233

connectSDK

* launchSession — LaunchSession object for use in closing media instance
* listener — (optional) ResponseListener< Object > with methods to be called on success or failure
PlaylistControl getPlaylistControl ()
CapabilityPriorityLevel getPlaylistControlCapabilityLevel ()
void jumpToTrack (long index, ResponseListener <Object> listener)
Jump the playlist to the designated track.
Play a track specified by index in the playlist
Related capabilities:
e PlaylistControl.JumpToTrack
Parameters:
¢ index — index in the playlist, it starts from zero like index of array
* listener — optional response listener
void setPlayMode (PlayMode playMode, ResponseListener <Object> listener)
Set order of playing tracks
Parameters:
* playMode

* listener — optional response listener

WebAppSession.LaunchListener

com.connectsdk.service.sessions.WebAppSession.LaunchListener
extendsResponseListener
Success block that is called upon successfully launch of a web app.

Passes a WebAppSession Object containing important information about the web app’s session. This object is required
to perform many functions with the web app, including app-to-app communication, media playback, closing, etc.

Inherited Methods

void onSuccess (T object)
Returns the success of the call of type T.
Parameters:

* object — Response object, can be any number of object types, depending on the proto-
col/capability/etc

void onError (ServiceCommandError error)

Method to return the error that was generated. Will pass an error object with a helpful status code and
error message.

Parameters:

* error — ServiceCommandError describing the error

234 Chapter 5. Promote Your TV App

connectSDK

WebAppSessionListener

com.connectsdk.service.sessions.WebAppSessionlListener

Methods

void onReceiveMessage (WebAppSession webAppSession, Object message)
This method is called when a message is received from a web app.
Parameters:
* webAppSession — WebAppSession that corresponds to the web app that sent the message
* message — Object from the web app, either an String or a JSONObject
void onWebAppSessionDisconnect (WebAppSession webAppSession)

This method is called when a web app’s communication channel (WebSocket, etc) has become discon-
nected.

Parameters:

* webAppSession — WebAppSession that became disconnected

WebAppStatus

com.connectsdk.service.sessions.WebAppSession.WebAppStatus

Status of the web app

Properties

Unknown Web app status is unknown

Open Web app is running and in the foreground

Background Web app is running and in the background

Foreground Web app is in the foreground but has not started running yet

Closed Web app is not running and is not in the foreground or background

5.10.8 Info Objects

Applnfo

com.connectsdk.core.AppInfo

Normalized reference object for information about a DeviceService’s app. This object will, in most cases, be used to
launch apps.

In some cases, all that is needed to launch an app is the app id.

5.10. API References 235

connectSDK

Methods

ApplInfo () Default constructor method.
Applnfo (String id) Default constructor method.
Parameters:
* id — App id to launch

String getld () Gets the ID of the app on the first screen device. Format is different depending on the platform. (ex.
youtube.leanback.v4, 0000001134, netflix, etc).

void setld (String id) Sets the ID of the app on the first screen device. Format is different depending on the platform.
(ex. youtube.leanback.v4, 0000001134, netflix, etc).

Parameters:
e id
String getName () Gets the user-friendly name of the app (ex. YouTube, Browser, Netflix, etc).
void setName (String name) Sets the user-friendly name of the app (ex. YouTube, Browser, Netflix, etc).
Parameters:
* name
JSONODbject getRawData () Gets the raw data from the first screen device about the app.
void setRawData (JSONODbject data) Sets the raw data from the first screen device about the app.
Parameters:
* data
boolean equals (Object 0) Compares two Applnfo objects.
Parameters:
¢ 0 — Other ApplInfo object to compare.

Returns: true if both Applnfo id values are equal

Inherited Methods

JSONObject toJSONObject ()

AppState

com.connectsdk.service.capability.Launcher.AppState

Helper class used with the AppStateListener to return the current state of an app.

Properties

boolean running Whether the app is currently running.

boolean visible Whether the app is currently visible.

236 Chapter 5. Promote Your TV App

connectSDK

Methods

AppState (boolean running, boolean visible) Parameters:
* running

¢ visible

Channelinfo

com.connectsdk.core.ChannelInfo

Normalized reference object for information about a TVs channels. This object is required to set the channel on a TV.

Methods

ChannelInfo () Default constructor method.

JSONODbject getRawData () Gets the raw data from the first screen device about the channel. In most cases, this is
an NSDictionary.

void setRawData (JSONODbject rawData) Sets the raw data from the first screen device about the channel. In most
cases, this is an NSDictionary.

Parameters:
* rawData
String getName () Gets the user-friendly name of the channel
void setName (String channelName) Sets the user-friendly name of the channel
Parameters:
¢ channelName
String getld () Gets the TV’s unique ID for the channel
void setld (String channelld) Sets the TV’s unique ID for the channel
Parameters:
e channelld
String getNumber () Gets the TV channel’s number (likely to be a combination of the major & minor numbers)

void setNumber (String channelNumber) Sets the TV channel’s number (likely to be a combination of the major &
minor numbers)

Parameters:
¢ channelNumber
int getMinorNumber () Gets the TV channel’s minor number
void setMinorNumber (int minorNumber) Sets the TV channel’s minor number
Parameters:
¢ minorNumber

int getMajorNumber () Gets the TV channel’s major number

5.10. API References 237

connectSDK

void setMajorNumber (int majorNumber) Sets the TV channel’s major number
Parameters:
* majorNumber
boolean equals (Object 0) Compares two Channellnfo objects.
Parameters:
°0

Returns: YES if both Channellnfo number & name values are equal

Inherited Methods

JSONObject toJSONObject ()

Externallnputinfo

com.connectsdk.core.ExternalInputInfo

Normalized reference object for information about a DeviceService’s external inputs. This object is required to set a
DeviceService’s external input.

Methods

ExternallnputInfo () Default constructor method.
String getld () Gets the ID of the external input on the first screen device.
void setld (String inputld) Sets the ID of the external input on the first screen device.
Parameters:
e inputld
String getName () Gets the user-friendly name of the external input (ex. AV, HDMII, etc).
void setName (String inputName) Sets the user-friendly name of the external input (ex. AV, HDMII, etc).
Parameters:
e inputName
void setRawData (JSONODbject rawData) Sets the raw data from the first screen device about the external input.
Parameters:
* rawData
JSONODbject getRawData () Gets the raw data from the first screen device about the external input.
boolean isConnected () Whether the DeviceService is currently connected to this external input.
void setConnected (boolean connected) Sets whether the DeviceService is currently connected to this external input.
Parameters:
* connected

String getIconURL () Gets the URL to an icon representing this external input.

238 Chapter 5. Promote Your TV App

connectSDK

void setlconURL (String iconURL) Sets the URL to an icon representing this external input.
Parameters:
* iconURL
boolean equals (Object 0) Compares two ExternallnputInfo objects.
Parameters:
°*0

Returns: YES if both ExternallnputInfo id & name values are equal

Inherited Methods

JSONObject toJSONObject ()

Imagelnfo

com.connectsdk.core.ImageInfo

Normalized reference object for information about an image file. This object can be used to represent a media file (ex.
icon, poster)

Inner Classes

* ImageType

Methods

Imagelnfo (String url) Default constructor method.
Parameters:
e url
Imagelnfo (String url, ImageType type, int width, int height) Default constructor method.
Parameters:
* url — add type of file, width and height of image.
* type
e width
* height
String getUrl () Gets URL address of an image file.
void setUrl (String url) Sets URL address of an image file.
Parameters:
e url

ImageType getType () Gets a type of an image file.

5.10. API References 239

connectSDK

void setType (ImageType type) Sets a type of an image file.
Parameters:
* type
int getWidth () Gets a width of an image.
void setWidth (int width) Sets a width of an image.
Parameters:
e width
int getHeight () Gets a height of an image.
void setHeight (int height) Sets a height of an image.
Parameters:
* height
boolean equals (Object 0) Parameters:
0

int hashCode ()

KeyCode

com.connectsdk.service.capability.KeyControl.KeyCode

Properties

NUM_0 = (0)
NUM_1 = (1)
NUM_2 = (2)
NUM_3 = (3)
NUM_4 = (4)
NUM_5 = (5)
NUM_6 = (6)
NUM_7 = (7)
NUM_8 = (8)
NUM_9 = (9)
DASH = (10)
ENTER = (11)

Methods

KeyCode (int code) Parameters:

e code

240 Chapter 5. Promote Your TV App

connectSDK

int getCode ()
static KeyCode createFromInteger (int keyCode) Parameters:

* keyCode

Medialnfo

com.connectsdk.core.MediaInfo

Normalized reference object for information about a media to display. This object can be used to pass as a parameter
to displaylmage or playMedia.

Inner Classes

e Builder

Methods

Medialnfo (String url, String mimeType, String title, String description) This constructor is deprecated. Use
MediaInfo.Builder instead.

Parameters:
e url — media file
* mimeType — media mime type
* title — optional metadata
¢ description — optional metadata

Medialnfo (String url, String mimeType, String title, String description, List<ImageInfo> alllmages) This con-
structor is deprecated. Use MediaInfo.Builder instead.

Parameters:
e url — media file
* mimeType — media mime type
* title — optional metadata
e description — optional metadata
* alllmages — list of imagelnfo objects where [0] is icon, [1] is poster
String getMimeType () Gets type of a media file.
void setMimeType (String mimeType) Sets type of a media file.
This method is deprecated.
Parameters:
* mimeType

String getTitle () Gets title for a media file.

5.10. API References 241

connectSDK

void setTitle (String title) Sets title of a media file.
This method is deprecated
Parameters:
e title
String getDescription () Gets description for a media.
void setDescription (String description) Sets description for a media. This method is deprecated
Parameters:
e description

List<Imagelnfo> getImages () Gets list of Imagelnfo objects for images representing a media (ex. icon, poster).
Where first ([0]) is icon image, and second ([1]) is poster image.

void setlmages (List</magelnfo> images) Sets list of Imagelnfo objects for images representing a media (ex. icon,
poster). Where first ([0]) is icon image, and second ([1]) is poster image.

This method is deprecated
Parameters:
* images
long getDuration () Gets duration of a media file.
void setDuration (long duration) Sets duration of a media file. This method is deprecated
Parameters:
e duration
String getUrl () Gets URL address of a media file.
void setUrl (String url) Sets URL address of a media file. This method is deprecated
Parameters:
e url
SubtitleInfo getSubtitleInfo ()
void addImages (Imagelnfo... images) Stores Imagelnfo objects.
This method is deprecated
Parameters:

* images

MediaLaunchObject

com.connectsdk.service.capability.MediaPlayer.MediaLaunchObject

Helper class used with the MediaPlayer.LaunchListener to return the current media playback.

Properties

LaunchSession launchSession The LaunchSession object for the media launched.

MediaControl mediaControl The MediaControl object for the media launched.

242 Chapter 5. Promote Your TV App

connectSDK

PlaylistControl playlistControl The PlaylistControl object for the media launched.

Methods

MediaL.aunchObject (LaunchSession launchSession, MediaControl mediaControl) Parameters:
¢ launchSession
¢ mediaControl

MediaLaunchObject (LaunchSession launchSession, MediaControl mediaControl, PlaylistControl playlistControl)
Parameters:

¢ launchSession
¢ mediaControl

¢ playlistControl

PlayMode

com.connectsdk.service.capability.PlaylistControl.PlayMode

Enumerates available playlist mode

Properties

Normal Default mode, play tracks in sequence and stop at the end.
Shuffle Shuffle the playlist and play in sequeance.
RepeatOne Repeat current track

RepeatAll Repeat entire playlist

PlayStateStatus

com.connectsdk.service.capability.MediaControl.PlayStateStatus

Enumerates possible playback status

Properties

Unknown Unknown state
Idle Media source is not set.
Playing Media is playing.
Paused Media is paused.

Buffering Media is buffering on the first screen device (e.g. on the TV)

5.10. API References 243

connectSDK

Methods

static PlayStateStatus convertPlayerStateToPlayStateStatus (int playerState) Converts int value into PlayStateS-
tatus

Parameters:
* playerState — int value
Returns: PlayStateStatus

static PlayStateStatus convertTransportStateToPlayStateStatus (String transportState) Converts String value
into PlayStateStatus

Parameters:
e transportState — String value

Returns: PlayStateStatus

Programinfo

com.connectsdk.core.ProgramInfo

Normalized reference object for information about a TVs program.

Methods

String getld () Gets the ID of the program on the first screen device. Format is different depending on the platform.

void setld (String id) Sets the ID of the program on the first screen device. Format is different depending on the
platform.

Parameters:
e id
String getName () Gets the user-friendly name of the program (ex. Sesame Street, Cosmos, Game of Thrones, etc).

void setName (String name) Sets the user-friendly name of the program (ex. Sesame Street, Cosmos, Game of
Thrones, etc).

Parameters:
* name
Channellnfo getChannellnfo () Gets the reference to the Channellnfo object that this program is associated with

void setChannellnfo (Channellnfo channellnfo) Sets the reference to the Channellnfo object that this program is
associated with

Parameters:
¢ channellnfo

Object getRawData () Gets the raw data from the first screen device about the program. In most cases, this is an
NSDictionary.

void setRawData (Object rawData) Sets the raw data from the first screen device about the program. In most cases,
this is an NSDictionary.

Parameters:

244 Chapter 5. Promote Your TV App

connectSDK

* rawData
boolean equals (Object 0) Compares two ProgramInfo objects.
Parameters:
°0

Returns: true if both ProgramInfo id & name values are equal

ProgramList

com.connectsdk.core.ProgramList

methods

ProgramList (Channellnfo channel, ISONArray programList)
Parameters
e channel
e programList
Channellnfo getChannel()
JSONArray getProgramList ()
JSONObject toJSONObject ()

Inherited Methods

JSONObject toJSONObject ()

TextinputStatusinfo

com.connectsdk.core.TextInputStatusInfo

Normalized reference object for information about a text input event.

Methods

TextInputStatusInfo ()
boolean isFocused ()
void setFocused (boolean focused)

Parameters:

* focused

TextInputType getTextInputType ()

Gets the type of keyboard that should be displayed to the user.
void setTextInputType (TextInputType textInputType)

Sets the type of keyboard that should be displayed to the user.

5.10. API References

245

connectSDK

Parameters:
* textInputType
void setContentType (String contentType)
Parameters:
* contentType
boolean isPredictionEnabled ()
void setPredictionEnabled (boolean predictionEnabled)
Parameters:
* predictionEnabled
boolean isCorrectionEnabled ()
void setCorrectionEnabled (boolean correctionEnabled)
Parameters:
* correctionEnabled
boolean isAutoCapitalization ()
void setAutoCapitalization (boolean autoCapitalization)
Parameters:
* autoCapitalization
boolean isHiddenText ()
void setHiddenText (boolean hiddenText)
Parameters:
* hiddenText
JSONObject getRawData ()
Gets the raw data from the first screen device about the text input status.
void setRawData (JSONObject dara)
Sets the raw data from the first screen device about the text input status.
Parameters:
* data
boolean isFocusChanged ()
void setFocusChanged (boolean focusChanged)
Parameters:

 focusChanged

VolumeStatus

com.connectsdk.service.capability.VolumeControl.VolumeStatus

Helper class used with the VolumeControl. VolueStatusListener to return the current volume status.

246 Chapter 5. Promote Your TV App

connectSDK

Properties

boolean isMute

float volume

Methods

VolumeStatus (boolean isMute, float volume)
Parameters:
e isMute

e volume

ScreenMirroringError

com.connectsdk.service.capability.ScreenMirroringControl.ScreenMirroringError

Enumerates error type

Properties

ERROR_GENERIC The general error

ERROR_CONNECTION_CLOSED The error that occurs when the network is disconnected
ERROR_DEVICE_SHUTDOWN The error that occurs when the TV shuts down
ERROR_RENDERER_TERMINATED The error that occurs when the TV app is closed

ERROR_STOPPED_BY_NOTIFICATION The error that occurs when mirroring is stopped through a notification
from the mobile device

RemoteCameraError

com.connectsdk.service.capability.RemoteCameraControl.RemoteCameraError

Enumerates error type

Properties

ERROR_GENERIC The general error

ERROR_CONNECTION_CLOSED The error that occurs when the network is disconnected
ERROR_DEVICE_SHUTDOWN The error that occurs when the TV shuts down
ERROR_RENDERER_TERMINATED The error that occurs when the TV app is closed

ERROR_STOPPED_BY_NOTIFICATION The error that occurs when remote camera is stopped through notifica-
tion from the mobile device

5.10. API References 247

connectSDK

RemoteCameraProperty

com.connectsdk.service.capability.RemoteCameraControl.RemoteCameraProperty

Enumerates property type

Properties

UNKNOWN Unknown property

RESOLUTION Property for setting resolution

LENS_FACING Property for setting the front/rear direction of the lens
BRIGHTNESS Property for setting brightness

WHITE_BALANCE Property for setting the white balance
AUTO_WHITE_BALANCE Property for automatic setting of white balance
AUDIO Property for setting audio

5.10.9 Advanced

ConnectableDeviceStore

com.connectsdk.device.ConnectableDeviceStore

ConnectableDeviceStore is a interface which can be implemented to save key information about ConnectableDevices
that have been connected to. Any class which implements this interface can be used as DiscoveryManager’s deviceS-
tore.

A default implementation, DefaultConnectableDeviceStore, will be used by DiscoveryManager if no other Con-
nectableDeviceStore is provided to DiscoveryManager when startDiscovery is called.

Privacy Considerations

If you chose to implement ConnectableDeviceStore, it is important to keep your users’ privacy in mind.
* There should be Ul elements in your app to
— completely disable ConnectableDeviceStore
— purge all data from ConnectableDeviceStore (removeAll)
* Your ConnectableDeviceStore implementation should
— avoid tracking too much data (indefinitely storing all discovered devices)

periodically remove ConnectableDevices from the ConnectableDeviceStore if they haven’t been used/connected in X
amount of time

Methods

void addDevice (ConnectableDevice device) Add a ConnectableDevice to the ConnectableDeviceStore. If the Con-
nectableDevice is already stored, it’s record will be updated.

Parameters:

248 Chapter 5. Promote Your TV App

connectSDK

¢ device — ConnectableDevice to add to the ConnectableDeviceStore

void removeDevice (ConnectableDevice device) Removes a ConnectableDevice’s record from the ConnectableDe-
viceStore.

Parameters:
¢ device — ConnectableDevice to remove from the ConnectableDeviceStore

void updateDevice (ConnectableDevice device) Updates a ConnectableDevice’s record in the ConnectableDeviceS-
tore.

Parameters:
¢ device — ConnectableDevice to update in the ConnectableDeviceStore

JSONODbject getStoredDevices () A JSONObject of all ConnectableDevices in the ConnectableDeviceStore. To gt
a strongly-typed ConnectableDevice object, use the getDevice (String) ; method.

ConnectableDevice getDevice (String uuid) Gets a ConnectableDevice object for a provided id. The id may be for
the ConnectableDevice object or any of the DeviceServices.

Parameters:
¢ uuid — Unique ID for a ConnectableDevice or any of its DeviceService objects
Returns: ConnectableDevice object if a matching uuit was found, otherwise will return null

ServiceConfig getServiceConfig (ServiceDescription serviceDescription) Gets a ServcieConfig object for a pro-
vided UUID. This is used by DiscoveryManager to retain crucial service information between sessions (pairing
code, etc).

Parameters:
* serviceDescription — Description for the service
Returns: ServiceConfig object if matching description was found, otherwise will return null

void removeAll () Clears out the ConnectableDeviceStore, removing all records.

DefaultConnectableDeviceStore

com.connectsdk.device.DefaultConnectableDeviceStore

Default implementation of ConnectableDeviceStore. It stores data in a file in application data directory.

Properties

long created Date (in seconds from 1970) that the ConnectableDeviceStore was created.
long updated Date (in seconds from 1970) that the ConnectableDeviceStore was last updated.
int version Current version of the ConnectableDeviceStore, may be necessary for migrations

long maxStoreDuration = TimeUnit.DAYS.toSeconds(3) Max length of time for a ConnectableDevice to remain in
the ConnectableDeviceStore without being discovered. Default is 3 days, and modifications to this value will
trigger a scan for old devices.

5.10. API References 249

connectSDK

Methods

void addDevice (ConnectableDevice device) Add a ConnectableDevice to the ConnectableDeviceStore. If the Con-
nectableDevice is already stored, it’s record will be updated.

Parameters:
¢ device — ConnectableDevice to add to the ConnectableDeviceStore

void removeDevice (ConnectableDevice device) Removes a ConnectableDevice’s record from the ConnectableDe-
viceStore.

Parameters:
¢ device — ConnectableDevice to remove from the ConnectableDeviceStore

void updateDevice (ConnectableDevice device) Updates a ConnectableDevice’s record in the ConnectableDeviceS-
tore.

Parameters:
* device — ConnectableDevice to update in the ConnectableDeviceStore
void removeAll () Clears out the ConnectableDeviceStore, removing all records.

JSONODbject getStoredDevices () A JSONObject of all ConnectableDevices in the ConnectableDeviceStore. To gt
a strongly-typed ConnectableDevice object, use the getDevice (String) ; method.

ConnectableDevice getDevice (String uuid) Gets a ConnectableDevice object for a provided id. The id may be for
the ConnectableDevice object or any of the DeviceServices.

Parameters:
¢ uuid — Unique ID for a ConnectableDevice or any of its DeviceService objects
Returns: ConnectableDevice object if a matching uuit was found, otherwise will return null

ServiceConfig getServiceConfig (ServiceDescription serviceDescription) Gets a ServcieConfig object for a pro-
vided UUID. This is used by DiscoveryManager to retain crucial service information between sessions (pairing
code, etc).

Parameters:
* serviceDescription — Description for the service

Returns: ServiceConfig object if matching description was found, otherwise will return null

Inherited Methods

void addDevice (ConnectableDevice device) Add a ConnectableDevice to the ConnectableDeviceStore. If the Con-
nectableDevice is already stored, it’s record will be updated.

Parameters:
¢ device — ConnectableDevice to add to the ConnectableDeviceStore

void removeDevice (ConnectableDevice device) Removes a ConnectableDevice’s record from the ConnectableDe-
viceStore.

Parameters:

¢ device — ConnectableDevice to remove from the ConnectableDeviceStore

250 Chapter 5. Promote Your TV App

connectSDK

void updateDevice (ConnectableDevice device) Updates a ConnectableDevice’s record in the ConnectableDeviceS-
tore.

Parameters:
¢ device — ConnectableDevice to update in the ConnectableDeviceStore

JSONODbject getStoredDevices () A JSONObject of all ConnectableDevices in the ConnectableDeviceStore. To gt
a strongly-typed ConnectableDevice object, use the getDevice (String) ; method.

ConnectableDevice getDevice (String uuid) Gets a ConnectableDevice object for a provided id. The id may be for
the ConnectableDevice object or any of the DeviceServices.

Parameters:
e uuid — Unique ID for a ConnectableDevice or any of its DeviceService objects
Returns: ConnectableDevice object if a matching uuit was found, otherwise will return null

ServiceConfig getServiceConfig (ServiceDescription serviceDescription) Gets a ServcieConfig object for a pro-
vided UUID. This is used by DiscoveryManager to retain crucial service information between sessions (pairing
code, etc).

Parameters:
* serviceDescription — Description for the service
Returns: ServiceConfig object if matching description was found, otherwise will return null

void removeAll () Clears out the ConnectableDeviceStore, removing all records.

5.11 Getting Started

5.11.1 Setup Instructions
Requirements
This guide assumes basic familiarity with Cordova (PhoneGap), Xcode, and Eclipse. For a more detailed walkthrough
of setting up a Cordova project, see the Cordova platform guides.
You should also have:
e Cordova 5.0 or later. We strongly encourage you to use the latest Cordova tools (5.2.0 at the time of this release)

¢ i0S: Xcode and Xcode command line tools

¢ Android: Android SDK with “android” tool in PATH or ANDROID_HOME environment variable (Cordova’s
Setup Guide)

Creating a Cordova app

Open a command terminal and cd to the directory where you want to create your Cordova project:

cordova create hello_connect com.example.helloconnect HelloConnect

This will create a directory named “hello_connect” with a basic Cordova app. Use the following commands to create
10S and Android projects:

5.11. Getting Started 251

https://cordova.apache.org/docs/en/5.0.0/guide_platforms_index.md.html#Platform%20Guides
http://cordova.apache.org/docs/en/5.0.0/guide_platforms_android_index.md.html#Android%20Platform%20Guide
http://cordova.apache.org/docs/en/5.0.0/guide_platforms_android_index.md.html#Android%20Platform%20Guide

connectSDK

cd hello_connect
cordova platform add android
cordova platform add ios

Note: Due to a bug in the current version of Cordova, do not put any spaces in the app name.

Add the Connect SDK Cordova plugin

This will download and install the Connect SDK plugin:

cordova plugin add cordova-plugin-connectsdk

The plugin will set up the projects automatically. If you run into any issues with the automatic setup process, please
email developer@Ige.com or file an issue on Github.

5.11.2 Discover & Connect to Device

This guide assumes you’re working with a brand new Cordova app as described in the Setup Instructions. It will show
you how to add a button that selects a supported smart TV on your local WiFi network and displays a video.

Adding a device picker button

Open hello_connect/www/index.html in your preferred editor. Let’s add a new button:

<div class="app">
<hl>Apache Cordova</hl>
<button onclick="app.showDevicePicker ()">Select a TV</button>

Open hello_connect/www/js/index.js in your preferred text editor. Find the “onDeviceReady” method, which is called
when Cordova is finished initializing. At the end, add the following line:

app.setupDiscovery () ;

Next, add a new method to the app object called setupDiscovery:

setupDiscovery: function () {
ConnectSDK.discoveryManager.startDiscovery () ;

}

Now let’s add a handler for the button:

showDevicePicker: function () {
ConnectSDK.discoveryManager.pickDevice () ;

Let’s build and run the modified example. If you are building through Xcode/Android Studio you will need to run the
following command to update the projects.

cordova prepare

Otherwise, you can simply build with the Cordova tools</>

252 Chapter 5. Promote Your TV App

mailto:developer@lge.com

connectSDK

cordova build

Connecting to a device

If the app launch went well, you should be able to click on the “Select a TV” button to bring up a picker.
Next, we should allow the user to actually do something with the TV.

Open hello_connect/www/js/index.js again. We’ll modify showDevicePicker to talk to the TV by chaining a success
callback that will be called when a device is selected. This function will be called with a device object as the first
argument, which we can use to send a video URL to the TV.

showDevicePicker: function () {
ConnectSDK.discoveryManager.pickDevice () .success (function (device) {
function sendvideo () {

device.getMediaPlayer () .playMedia ("http://media.w3.0rg/2010/05/sintel/
—trailer.mpd", "video/mp4d");

}

if (device.isReady()) { // already connected
sendVideo () ;
} else {

device.on("ready", sendVideo);
device.connect () ;

Capability Filtering

If your app is making use of certain device capabilities (media playback/controls, web app launching, etc), it is strongly
recommended that you create filters with this information for DiscoveryManager.

Devices that are discovered & shown in the picker will be guaranteed to have the set of capabilities that you have
provided. This will prevent your users from selecting a device that has not yet acquired all of its protocols.

var videoFilter = new ConnectSDK.CapabilityFilter ([
ConnectSDK.Capabilities.MediaPlayer.Play.Video,
ConnectSDK.Capabilities.MediaControl.Any,
ConnectSDK.Capabilities.VolumeControl.UpDown

1)

var imageFilter = new ConnectSDK.CapabilityFilter ([
ConnectSDK.Capabilities.MediaPlayer.Display.Image
1)

ConnectSDK.discoveryManager.setCapabilityFilters ([videoFilter, imageFilter]);

app.setupDiscovery () ;

5.11. Getting Started 253

connectSDK

5.12 Developer Guides

5.12.1 Beam Media

A common use case with Connect SDK will be to beam a simple media file (image, video, audio) to a TV. The
following is a quick example of how you can beam an image onto a TV. This example is assuming that you have
discovered & connected to a device.

Beam an image file

var url = "http://www.connectsdk.com/files/9613/9656/8539/test_image.jpg";
var iconUrl = "http://www.connectsdk.com/files/9613/9656/8539/test_image. jpg";
var mimeType = "image/jpeg";

device.getMediaPlayer () .displayImage (url, mimeType, {
title: "Sintel Character Design",
description: "Blender Open Movie Project",

}) .success (function (launchSession, mediaControl) {
console.log("Image launch successful");

}) .error (function (err) {
console.log("error: " + err.message);

)i

Beam an audio/video file

var myMediaControl;

var url = "http://www.connectsdk.com/files/8913/9657/0225/test_video.mp4";
var iconUrl = "http://www.connectsdk.com/files/7313/9657/0225/test_video_icon.Jjpg";
var mimeType = "video/mp4";

device.getMediaPlayer () .displayImage (url, mimeType, {
title: "Sintel Trailer",
description: "Blender Open Movie Project",

}) .success (function (launchSession, mediaControl) ({
console.log("Video launch successful");

// save a reference to the MediaControl object (if supported)
myMediaControl = mediaControl && mediaControl.acquire();

}) .error (function (err) {
console.log("error: " + err.message);

)i

Control media playback

In the previous example, you will notice that the success block was called with a mediaControl object. In order to
control the media in the current playback session, you will need to store a reference to this mediaControl object and
call control methods on that object.

// Pause media
myMediaControl.pause ()

(continues on next page)

254 Chapter 5. Promote Your TV App

connectSDK

(continued from previous page)

// Play media
myMediaControl.play();

// Seek to 10 seconds
myMediaControl.seek (10);

// Close media player
myLaunchSession.close () ;

Beam media to web app

A common use case for web apps is the playback and control of media files. Connect SDK provides capabilities
for directly playing/controlling media on a WebAppSession, provided that web app has integrated the Connect SDK
JavaScript Bridge.

Rather than calling playMedia on your device’s mediaPlayer, webAppSession provides its own mediaPlayer. After
media has been beamed into the web app, the control is just like any other media session.

myWebAppSession.getMediaPlayer () .playMedia (url, mimeType, options) .success (function
— (launchSession, mediaControl) {
myLaunchSession = launchSession.acquire();
myMediaControl = mediaControl && mediaControl.acquire();
}) .error (function (err) {
console.log("play video failure: " + err.message);
1)

Beam a playlist

var url = "your-playlist.m3u";
var mimeType = "application/x-mpegurl";
var options = { title: "Playlist", description: "Playlist Description" };

myWebAppSession.getMediaPlayer () .playMedia (url, mimeType, options)
.success (function (launchSession, mediaControl, playlistControl) {
myLaunchSession = launchSession.acquire();
myMediaControl = mediaControl && mediaControl.acquire();
myPlaylistControl = playlistControl && playlistControl.acquire();
}) .error (function (err) {
console.log("play video failure: " + err.message);
1)

Control a playlist

// play previous track

myPlaylistControl.previous () ;

// play next track

myPlaylistControl.next ();

// play a track specified by index (index starts from zero)
myPlaylistControl. jumpToTrack (0) ;

5.12. Developer Guides 255

connectSDK

5.12.2 Beam Web Apps

There are several platforms available which support the launching of web apps. A web app is typically run on a
temporary basis in a full-screen browser instance.

Web App IDs

Both webOS and Chromecast platforms require a web app ID for API calls to launch & communicate with web apps.
This web app ID is translated it into your web app’s URL on web app launch.

For information on creating a web app ID for webOS, please visit the registration site.
To learn how to register for a Chromecast web app ID, visit ‘Google’s app ID registration site‘_.

Launch web app with identifier

Connect SDK currently supports web app launching on webOS and Chromecast devices, which both translate a web
app identifier into your web app’s URL.

Communicate with web app

Bi-directional communication with your web app is made extremely simple. Data can be sent and received strongly-
typed as a string or a keyed set of values (JSON object).

var webAppld;

if (device.hasService (ConnectSDK.Services.WebOSTV)) {
webAppId = "5G7328DE";

} else if (device.hasService (ConnectSDK.Services.Chromecast)) {
webAppId = "3E5106AB";

} else if (device.hasService (ConnectSDK.Services.AirPlay)) {
webAppId = "http://www.example.com/";

if (!webAppId) {
return;

device.getWebAppLauncher () . launchWebApp (webAppId) .success (function (session) {
console.log("web app launch success");

}) .error (function (err) {
console.log("web app launch error: " + err.message);

)i

var mySession = null;
var webAppld;

if (device.hasService (ConnectSDK.Services.WebOSTV)) {
webAppId = "5G7328DE";

} else if (device.hasService (ConnectSDK.Services.Chromecast)) {
webAppId = "3E5106AB";

(continues on next page)

256 Chapter 5. Promote Your TV App

http://lgsvl.com/connectSDK/index.php

connectSDK

(continued from previous page)

if (!webAppId) {
return;

device.getWebAppLauncher () . launchWebApp (webAppId) .success (function (session) {
// Keep a reference to the session
mySession = session.acquire();

// Open a communication channel to the app
mySession.connect () .success (function () {
console.log("web app connect success");
}) .error (function (err) {
console.log("web app connect error: " + err.message);

)i

// Make sure to release the session when done using it
mySession.on ("disconnect"”, function () {
mySession.release();
mySession = null;
1)
}) .error (function (err) {
console.log("web app launch error: " + err.message);
}) i

After successfully establishing a connection, you can send messages to your web app.

mySession.sendText ("This is a test message");

You can also send a Javascript dictionary object which will be received by the web app as an object.

var message = {
someParameter: "someValue",
anArray: ["array value 1", "array value 2", "array value 3"],
anotherObject: {
anotherParameter: "anotherValue"

}i

mySession.sendJSON (message) ;

The “message” event allows you to receive messages from your web app.

mySession.on ("message", function (message) {
console.log("Received message from web app:" + JSON.stringify (message));
}) i

5.12.3 Launch Appon TV

Many TVs and streaming players include support for launching installed apps. The following is a simplified example
of how to launch YouTube on a device.

5.12. Developer Guides 257

connectSDK

Launch an app

device.getLauncher () .launchApp ("YouTube") .success (function (launchSesssion) {
console.log("app launch success");

}) .error (function (err) {
console.log("app launch error: " + err.message);

)i

Device-specific app identifiers
On each device (webOS TV, Roku, etc) apps are identified by different values. Here is an example of the different
identifiers in use for the YouTube app.

* webOS: youtube.leanback.v4 (value may change with future updates)

¢ Netcast: 0000000000017498 (value may be different on each TV)

* DIAL: YouTube (listed in DIAL registry)

* Roku: 837 (Roku-specific channel number)

Launching an app with device-specific identifiers

The following snippet shows how to detect the platform of your device and launch with the appropriate app identifier.

var appld;

if (device.hasService (ConnectSDK.Services.WebOSTV)) {
appld = "youtube.leanback.v4";

} else if (device.hasService (ConnectSDK.Services.NetcastTV)) {
appId = "0000000000017498";

} else if (device.hasService (ConnectSDK.Services.Roku)) {
applId = "837";

} else if (device.hasService (ConnectSDK.Services.DIAL)) {
appld = "YouTube";

if (lappId) {
return;

device.getLauncher () .launchApp (appId) .success (function (launchSesssion) {
console.log("app launch success");

}) .error (function (err) {
console.log("app launch error: " + err.message);

}) i

Launching an app with parameters

In most cases, a device’s launcher object will allow you to pass launch parameters to your app. Connect SDK has
normalized the parameter input type to a keyed set of values. These values are then parsed into the appropriate format
for the protocol (XML, JSON, URL params, etc).

258 Chapter 5. Promote Your TV App

http://www.dial-multiscreen.org/dial-registry/namespace-database

connectSDK

var params = {
"someKey": "someValue"

device.getLauncher () .launchApp (appld, params) .success (function (launchSesssion) {
console.log("app launch success");

}) .error (function (err) {
console.log("app launch error: " + err.message);

)i

Important: Due to the variety of protocols in use, it is strongly recommended that you only use strings for the keys
AND values of your parameters.

5.12.4 Discovery Manager

At the heart of Connect SDK is DiscoveryManager, a multi-protocol service discovery engine with a pluggable archi-
tecture. Much of your initial experience with Connect SDK will be with the DiscoveryManager class, as it consolidates
discovered service information into ConnectableDevice objects.

DiscoveryManager supports discovering services of differing protocols by using DiscoveryProviders. Many services
are discoverable over SSDP and are registered to be discovered with the SSDPDiscoveryProvider class.

As services are discovered on the network, the DiscoveryProviders will notify DiscoveryManager. DiscoveryManager
is capable of attributing multiple services, if applicable, to a single ConnectableDevice instance. Thus, it is possible to
have a mixed-mode ConnectableDevice object that is theoretically capable of more functionality than a single service
can provide.

DiscoveryManager keeps a running list of all discovered devices and maintains a filtered list of devices that have
satisfied any of your CapabilityFilters. This filtered list is used by the DevicePicker when presenting the user with a
list of devices.

Connect SDK device discovery can be started in one line.

ConnectSDK.discoveryManager.startDiscovery () ;

Features

Filtering devices by capability

It will be necessary in many cases to filter out devices that don’t support a desired feature-set. DiscoveryManager
provides the setCapabilityFilters method to provide for this ability.

Here is a simple example that discovers devices that support (video playback AND any media controls AND volume
up/down) OR (image display).

var videoFilter = new ConnectSDK.CapabilityFilter ([
ConnectSDK.Capabilities.MediaPlayer.Play.Video,
ConnectSDK.Capabilities.MediaControl.Any,
ConnectSDK.Capabilities.VolumeControl.UpDown
1)

var imageFilter = new ConnectSDK.CapabilityFilter ([
ConnectSDK.Capabilities.MediaPlayer.Display.Image

(continues on next page)

5.12. Developer Guides 259

connectSDK

(continued from previous page)

1)

ConnectSDK.discoveryManager.setCapabilityFilters ([videoFilter, imageFilter]);
app.setupDiscovery () ;

Pairing level

Connect SDK has support for pairing with certain devices. Having pairing disabled may reduce the number of sup-
ported capabilities that a ConnectableDevice has. Certain devices, although they may support the features you are
filtering for, may not pass your CapabilityFilter if pairing is disabled.

See the Supported Features list for information on what devices require pairing for certain capabilities.

For the best user experience, Connect SDK has disabled pairing by default. Pairing can be enabled very easily, but it
must be enabled before DiscoveryManager is started for the first time.

// Include capabilities that require pairing
ConnectSDK.discoveryManager.setPairingLevel (ConnectSDK.PairingLevel.ON) ;

// Exclude capabilities that require pairing (this is the default)
ConnectSDK.discoveryManager.setPairingLevel (ConnectSDK.PairingLevel.OFF) ;

Automatic stop/resume on app state change

If DiscoveryManager is running while your app enters a background state, it will resume immediately upon returning
to a foreground state. This is to prevent battery drain on the user’s device.

See also:
* DiscoveryManager

* CapabilityFilter

5.13 API References

5.13.1 Discovery
CapabilityFilter

CapabilityFilter consists of a list of capabilities which must all be present in order for the filter to match.

For example,

new ConnectSDK.CapabilityFilter ([ConnectSDK.Capabilities.MediaPlayer.Play.Video,
ConnectSDK.Capabilities.MediaControl.Pause])

describes a device that supports showing a video and pausing it.

260 Chapter 5. Promote Your TV App

connectSDK

Methods

new CapabilityFilter (capabilities)
Create a CapabilityFilter
Parameters:
* capabilities (string[]) — array of capabilities
capabilityFilter. getCapabilities ()

Returns: string[] — list of capabilities in filter

DevicePicker

DevicePicker represents a picker UI widget created by calling Di scoveryManager.pickDevice ().

Example:

var devicePicker = ConnectSDK.discoveryManager.pickDevice ()
devicePicker.success (function (device) {

console.log("picked device " + device.getFriendlyName());
}) i

Methods

devicePicker.close () Close the device picker.

Mixin Methods - SimpleEventEmitter

devicePicker.addListener (event, callback, [context]) Add event listener.
Parameters:
* event (string) — name of event
e callback (function) — function to call when event is fired
* context (object) [optional] — object to bind to “this” value when calling function
Returns: object — reference to the same object to allow chaining

devicePicker.removeListener (event, [callback], [context]) Remove event listener with the specified callback and
context. If callback is null or undefined, all callbacks for this event will be removed.

Parameters:
 event (string) — name of event
* callback (function) [optional] — function originally passed to addListener
 context (object) [optional] — context object originally passed to addListener
Returns: object — reference to the same object to allow chaining
devicePicker.on (event, callback, [context]) Alias for addListener.
Parameters:

e event (string) — name of event

5.13. API References 261

connectSDK

e callback (function) — function to call when event is fired
* context (object) [optional] — object to bind to “this” value when calling function
Returns: object — reference to the same object to allow chaining
devicePicker.off (event, [callback], [context]) Alias for removeListener.
Parameters:
* event (string) — event name
* callback (function) [optional] — function originally passed to on
 context (object) [optional] — context object originally passed to on

Returns: object — reference to the same object to allow chaining

Mixin Methods - SuccessCallbacks

devicePicker.success (callback, [context]) Register a callback for the “success” event. The success callback may be
called with zero or more arguments depending on the type of response.

Example:

obj.success (function (result) {
this.report ("I got a result: " + result);
}, this);

Parameters:

e callback (function) — function to call when event is fired

 context (*) [optional] — object to bind to “this” value when calling function
Returns: object — reference to the same object to allow chaining

devicePicker.error (callback, [context]) Register a callback for the “error” event. The error callback will be called
with a error object as the only argument.

Example:

obj.error (function (err) {
this.reportError ("I got an error: " + err);
}, this);

Parameters:

e callback (function) — function to call when event is fired

* context (*) [optional] — object to bind to “this” value when calling function
Returns: object — reference to the same object to allow chaining

devicePicker.complete (callback, [context]) Register a callback for the “complete” event. The complete callback
will be called with

Example:

obj.complete (function (err, result) {
if (err) {
this.report ("I got an error: " + err);
} else {

(continues on next page)

262 Chapter 5. Promote Your TV App

connectSDK

(continued from previous page)

console.log ("I got a result: " + result);

}
}, this);

Parameters:
e callback (function) — function to call when event is fired
 context (*) [optional] — object to bind to “this” value when calling function

Returns: object — reference to the same object to allow chaining

DiscoveryManager

ConnectSDK.discoveryManager is the main entry point into ConnectSDK. It allows finding devices on the local net-
work and displaying a picker to select and connect to a device. DiscoveryManager should always be accessed through
its singleton instance, ConnectSDK.discoveryManager.

DiscoveryManager emits the following events while active:
* startdiscovery
* stopdiscovery
¢ devicelistchanged
¢ devicefound (device)
¢ devicelost (device)

* deviceupdated (device)

Methods

discoveryManager.startDiscovery ([config]) Start searching for devices. DiscoveryManager will start emitting
events as the device list changes, and populates the device list used by pickDevice().

Parameters:

* config (Object) [optional] — Dictionary of settings to configure before starting discovery. Supported keys
are “pairingLevel” and “capabilityFilters”. See setPairinglevel and setCapabilityFilter for more details.

discoveryManager.stopDiscovery () Stop searching for devices.

discoveryManager.setPairingLevel (pairingLevel) Set pairing level. If set to ConnectSDK.Pairinglevel.OFF, the
SDK will request device capabilities that do not require entering a pairing code/confirmation.

Parameters:

e pairinglLevel (string) — Valid values are the constants ConnectSDK.PairingLevel. ON and Con-
nectSDk.Pairinglevel. OFF

discoveryManager.setAirPlayServiceMode () Set mode for AirPlay support. If set to Con-
nectSDK.AirPlayServiceMode.WebApp, a web app will will be mirrored to the TV. If set to Con-
nectSDK.AirPlayServiceMode.Media, only media APIs will be available. On Android, media mode is
the only option.

NOTE: This setting must be configured before calling startDiscovery(), or passed in the options parameter to
startDiscovery(). The mode should not be changed once configured.

5.13. API References 263

connectSDK

discoveryManager.setCapabilityFilters (filters) Set capability filters. DiscoveryManager will only show devices
that match at least one of the CapabilityFilter instances.

Example:

// Show devices that support playing videos and pausing OR support launching,
—YouTube with a video id
ConnectSDK.discoveryManager.setCapabilityFilters ([

new ConnectSDK.CapabilityFilter ([ConnectSDK.Capabilities.MediaPlayer.Play.
—Video, ConnectSDK.Capabilities.MediaControl.Pause])

new ConnectSDK.CapabilityFilter ([ConnectSDK.Capabilities.Launcher.YouTube.
—Params])

1)

Parameters:
« filters (CapabilityFilter[]) — array of CapabilityFilter objects

discoveryManager.pickDevice ([options]) Show device picker popup. To get notified when the user has selected a
device, add a success/error listener to the DevicePicker returned when calling this method.

Parameters:

 options (Object) [optional] — All keys are optional

- pairingType (string): PairingType to use

Returns: DevicePicker
discoveryManager.getDeviceList () Get a list of discovered devices available on the network.

Returns: ConnectableDevicel]

Mixin Methods - SimpleEventEmitter

discoveryManager.addListener (event, callback, [context]) Add event listener.
Parameters:
e event (string) — name of event
e callback (function) — function to call when event is fired
* context (object) [optional] — object to bind to “this” value when calling function
Returns: object — reference to the same object to allow chaining

discoveryManager.removeListener (event, [callback], [context]) Remove event listener with the specified callback
and context. If callback is null or undefined, all callbacks for this event will be removed.

Parameters:
e event (string) — name of event
e callback (function) [optional] — function originally passed to addListener
* context (object) [optional] — context object originally passed to addListener
Returns: object — reference to the same object to allow chaining
discoveryManager.on (event, callback, [context]) Alias for addListener.
Parameters:

* event (string) — name of event

264 Chapter 5. Promote Your TV App

connectSDK

e callback (function) — function to call when event is fired

* context (object) [optional] — object to bind to “this” value when calling function
Returns: object — reference to the same object to allow chaining

discoveryManager.off (event, [callback], [context]) Alias for removeListener.

Parameters:

* event (string) — event name

* callback (function) [optional] — function originally passed to on

 context (object) [optional] — context object originally passed to on

Returns: object — reference to the same object to allow chaining

5.13.2 Device
Command

Command objects are returned when calling capability methods. Command objects allow listening for success/cancel
events from the request.

Example:

var command = device.getLauncher () .launchBrowser (url);

command.success (function (launchSession) {
console.log("command was successful");
}) .error (function (err) {
console.error ("command failed");

)i

Mixin Methods - SimpleEventEmitter

command.addListener (event, callback, [context]) Add event listener.
Parameters:
* event (string) — name of event
¢ callback (function) — function to call when event is fired
 context (object) [optional] — object to bind to “this” value when calling function
Returns: object — reference to the same object to allow chaining

command.removeListener (event, [callback], [context]) Remove event listener with the specified callback and con-
text. If callback is null or undefined, all callbacks for this event will be removed.

Parameters:
* event (string) — name of event
e callback (function) [optional] — function originally passed to addListener
 context (object) [optional] — context object originally passed to addListener

Returns: object — reference to the same object to allow chaining

5.13. API References 265

connectSDK

command.on (event, callback, [context]) Alias for addListener.
Parameters:
* event (string) — name of event
e callback (function) — function to call when event is fired
¢ context (object) [optional] — object to bind to “this” value when calling function
Returns: object — reference to the same object to allow chaining
command.off (event, [callback], [context]) Alias for removeListener.
Parameters:
e event (string) — event name
* callback (function) [optional] — function originally passed to on
 context (object) [optional] — context object originally passed to on

Returns: object — reference to the same object to allow chaining
Mixin Methods - SuccessCallbacks

command.success (callback, [context]) Register a callback for the “success” event. The success callback may be
called with zero or more arguments depending on the type of response.

Example:

obj.success (function (result) {

this.report ("I got a result: " + result);
}, this);

Parameters:

¢ callback (function) — function to call when event is fired
 context (*) [optional] — object to bind to “this” value when calling function
Returns: object — reference to the same object to allow chaining

command.error (callback, [context]) Register a callback for the “error” event. The error callback will be called with
a error object as the only argument.

Example:
obj.error (function (err) {
this.reportError ("I got an error: " + err);
}, this);
Parameters:

e callback (function) — function to call when event is fired
 context (*) [optional] — object to bind to “this” value when calling function
Returns: object — reference to the same object to allow chaining

command.complete (callback, [context]) Register a callback for the “complete” event. The complete callback will
be called with

Example:

266 Chapter 5. Promote Your TV App

connectSDK

obj.complete (function (err, result) {
if (err) {
this.report ("I got an error: " + err);
} else {
console.log ("I got a result: " + result);
}
}, this);

Parameters:
¢ callback (function) — function to call when event is fired
 context (*) [optional] — object to bind to “this” value when calling function

Returns: object — reference to the same object to allow chaining

ConnectableDevice
ConnectableDevice represents a device on the network. It provides several capability interfaces which allow the
developer to get information from and control the device.

These interfaces are accessed using getter methods like device.getLauncher(). Not all of the capabilities or methods are
available on every device; you should check if the functionality is supported using device.supports(capabilityName).

If the device was selected from the built-in picker, it will already be connected; if the device was obtained from
elsewhere then you must call device.connect() and wait for the “ready” event before trying to use the device.

Example:

device.on ("ready", function () {
// ready to send commands now
device.getLauncher () .launchYouTube (videoId) ;
}) i

device.connect () ;

ConnectableDevice emits the following high-level events:
* ready - device is ready to use
* disconnect - device is no longer connected
* capabilitieschanged - some capabilities may be available or unavailable now

Internally, ConnectableDevice uses one or more services to control a device on the network. Services speak a specific
protocol like DIAL or DLNA or other vendor-specific protocols. Services are not directly accessible from the Connect
SDK Cordova plugin at this time.

There are several events related to the process of connecting to individual services:
* serviceconnectionrequired - pending connection
* serviceconnectionerror - error connecting to a service
* servicepairingrequired - pairing is required for a service
* servicepairingsuccess - pairing successful for a service

e servicepairingerror - error pairing with a service

5.13. API References 267

connectSDK

Methods

connectableDevice.getLauncher () Returns: Launcher
connectableDevice.getMediaPlayer () Returns: MediaPlayer
connectableDevice.getExternallnputControl () Returns: ExternallnputControl
connectableDevice.getMediaControl () Returns: MediaControl
connectableDevice.getKeyControl () Returns: KeyControl
connectableDevice.getMouseControl () Returns: MouseControl
connectableDevice.getTextInputControl () Returns: TextinputControl
connectableDevice.getPowerControl () Returns: PowerControl
connectableDevice.getToastControl () Returns: ToastControl
connectableDevice.getTVControl () Returns: 7VControl
connectableDevice.getVolumeControl () Returns: VolumeControl
connectableDevice.getWebAppLauncher () Returns: WebAppLauncher
connectableDevice.connect () Connect to the device.
connectableDevice.disconnect () Disconnect from the device.
connectableDevice.setPairingType (pairingType) Set a desirable pairing type to the device.
Parameters:
e pairingType — (string): PairingType to use
connectableDevice.isReady () Returns true if device is ready to use.
connectableDevice.getFriendlyName () Get the human-readable name of the device.
Returns: string
connectableDevice.getIPAddress () Get the last known IP address of the device.
Returns: string
connectableDevice.getModelName () Get the device model name.
Returns: string
connectableDevice.getModelNumber () Get the device model number.
Returns: string
connectableDevice.getCapabilities () Get a list of capabilities supported by this device.
Returns: string[] — array of capabilities supported by this device
connectableDevice.hasCapability (name) Parameters:
* name (string) — of capability. You should use the ConnectSDK.Capabilities constant to reference strings.
Returns: boolean — true if device supports the given capability

connectableDevice.supports ([...]) Flexible version of hasCapability which returns true if all of the capabilities
specified are supported.

* supports(ConnectSDK.Capabilities.MediaControl. Any)
* supports(ConnectSDK.Capabilities. VolumeControl.Set, ConnectSDK.Capabilities.Launcher.Any)

268 Chapter 5. Promote Your TV App

connectSDK

* supports([ConnectSDK.Capabilities. TVControl. Any, ConnectSDK.Capabilities.Launcher.Any])
Parameters:

e ... [optional] — array of capability names. You should use the ConnectSDK.Capabilities constant to
reference strings.

Returns: boolean — true if all specified capabilities are supported
connectableDevice.supportsAny ([...]) Like supports() but returns true if any specified capability is supported.
Parameters:

e ... [optional] — array of capability names. You should use the ConnectSDK.Capabilities constant to
reference strings.

Returns: boolean — true if any specified capability is supported

connectableDevice.hasService (serviceName) Returns true if the device supports the specified service. See Con-
nectSDK.Services for a list of constants.

Parameters:
» serviceName (string)
Returns: boolean — true if service is supported

connectableDevice.getService (serviceName) Returns a wrapper for a service which gives access to low-level func-
tionality. Only a limited subset of the services supported by the native SDK are available through this plugin.

Parameters:
* serviceName (string)
Returns: object — service object or null if not supported

connectableDevice.getld () Returns an internal id assigned by the SDK to this device. For devices that have been
connected to or paired, this id will be persisted to disk in the device store to allow the app to identify the device
later (such as reconnecting to the last connected device when starting the app).

Mixin Methods - SimpleEventEmitter

connectableDevice.addListener (event, callback, [context]) Add event listener.
Parameters:
* event (string) — name of event
¢ callback (function) — function to call when event is fired
 context (object) [optional] — object to bind to “this” value when calling function
Returns: object — reference to the same object to allow chaining

connectableDevice.removeListener (event, [callback], [context]) Remove event listener with the specified callback
and context. If callback is null or undefined, all callbacks for this event will be removed.

Parameters:
e event (string) — name of event
e callback (function) [optional] — function originally passed to addListener
* context (object) [optional] — context object originally passed to addListener

Returns: object — reference to the same object to allow chaining

5.13. API References 269

connectSDK

connectableDevice.on (event, callback, [context]) Alias for addListener.
Parameters:
* event (string) — name of event
e callback (function) — function to call when event is fired
¢ context (object) [optional] — object to bind to “this” value when calling function
Returns: object — reference to the same object to allow chaining
connectableDevice.off (event, [callback], [context]) Alias for removeListener.
Parameters:
e event (string) — event name
« callback (function) [optional] — function originally passed to on
 context (object) [optional] — context object originally passed to on

Returns: object — reference to the same object to allow chaining

Subscription

Subscription objects are returned when calling capability subscription methods.

Subscription objects allow listening for success/error events from the request. Success events may be emitted multiple
times when updates to the subscription are received.

Example:

var subscription = device.getVolumeControl ().subscribeVolume () ;
var updateCount = 0;

subscription.success (function (volume) {
// this may be called multiple times
console.log("got volume update: " + volume);

updateCount++;
if (updateCount > 5) {
// unsubscribe after 5 updates
subscription.unsubscribe () ;
}
}) .error (function (err) {
console.error ("subscription failed");

)i

Methods

subscription.unsubscribe () Unsubscribes from this subscription. Notifies the device that updates are no longer
needed, and stops emitting events from this Subscription object.

Mixin Methods - SimpleEventEmitter

subscription.addListener (event, callback, [context]) Add event listener.

Parameters:

270 Chapter 5. Promote Your TV App

connectSDK

e event (string) — name of event

e callback (function) — function to call when event is fired

* context (object) [optional] — object to bind to “this” value when calling function
Returns: object — reference to the same object to allow chaining

subscription.removeListener (event, [callback], [context]) Remove event listener with the specified callback and
context. If callback is null or undefined, all callbacks for this event will be removed.

Parameters:
e event (string) — name of event
e callback (function) [optional] — function originally passed to addListener
* context (object) [optional] — context object originally passed to addListener
Returns: object — reference to the same object to allow chaining
subscription.on (event, callback, [context]) Alias for addListener.
Parameters:
* event (string) — name of event
e callback (function) — function to call when event is fired
¢ context (object) [optional] — object to bind to “this” value when calling function
Returns: object — reference to the same object to allow chaining
subscription.off (event, [callback], [context]) Alias for removeListener.
Parameters:
e event (string) — event name
* callback (function) [optional] — function originally passed to on
 context (object) [optional] — context object originally passed to on

Returns: object — reference to the same object to allow chaining

Mixin Methods - SuccessCallbacks

subscription.success (callback, [context]) Register a callback for the “success” event. The success callback may be
called with zero or more arguments depending on the type of response.

Example:

obj.success (function (result) {
this.report ("I got a result: " + result);
}, this);

Parameters:
¢ callback (function) — function to call when event is fired
 context (*) [optional] — object to bind to “this” value when calling function

Returns: object — reference to the same object to allow chaining

5.13. API References 271

connectSDK

subscription.error (callback, [context]) Register a callback for the “error” event. The error callback will be called
with a error object as the only argument.

Example:

obj.error (function (err) {
this.reportError ("I got an error: " + err);
}, this);

Parameters:

e callback (function) — function to call when event is fired

* context (*) [optional] — object to bind to “this” value when calling function
Returns: object — reference to the same object to allow chaining

subscription.complete (callback, [context]) Register a callback for the “complete” event. The complete callback
will be called with

Example:
obj.complete (function (err, result) {
if (err) {
this.report ("I got an error: " + err);
} else {
console.log ("I got a result: " + result);
}
}, this);
Parameters:

¢ callback (function) — function to call when event is fired
 context (*) [optional] — object to bind to “this” value when calling function
Returns: object — reference to the same object to allow chaining
5.13.3 Sessions
LaunchSession

A LaunchSession represents the result of an app launch. Its primary purpose is to be able to close an app that was
previously launched, using the launchSession.close() method.

Methods

launchSession.close () Close the app/media associated with this launch session.

Mixin Methods - WrappedObject

launchSession.acquire () Indicate that you would like to keep an active reference to this object. Wrapped objects
that are not acquired may be freed after the success callback returns.

Returns: object — reference to object

launchSession.release () Release the reference to this object. After calling .release(), this object may no longer be
used. You should always release objects when you no longer need them, to avoid memory leaks.

272 Chapter 5. Promote Your TV App

connectSDK

WebAppSession

A WebAppSession represents a web-based app running on a TV. You can communicate with a web app by first calling
connect() to establish a communication channel, and then listening for “message” events as well as sending your own
messages using sendText and sendJSON.

Example:

device.getWebAppLauncher () . launchWebApp (webAppId) .success (function (session) {
this.session = session.acquire(); // hold on to a reference
session.connect () .success (function () {

session.sendText ("Hello world");
)i

session.on('message', function (message) {
// message could be either a string or an object

if (typeof message === 'string') {
console.log("received string message: " + message);
} else {
console.log("received object message: " + JSON.stringify (message);
}
}, this);
session.on('disconnect', function () {

console.log("session disconnected");
this.session = null;
}, this);

}, this);

Methods

webAppSession.connect () Open a message channel to the app.
Returns: Command
webAppSession.disconnect () Close channel to app.
Returns: Command
webAppSession.setWebAppSessionListener () Set web app session listener to app
Returns: Command
webAppSession.sendText (fext) Send a text string to the app. Must be connected first.
Parameters:
e text (string) — Text to send to the app
Returns: Command

webAppSession.sendJSON (object) Send a plain JavaScript object to the app. Must be connected first. If the receiv-
ing app does not support non-string messages, the object will be serialized into a string in JSON format.

Parameters:
* object (object) — Plain JavaScript object to send to the app

Returns: Command

5.13. API References 273

connectSDK

webAppSession.close () Close the web app.

Returns: Command

Mixin Methods - SimpleEventEmitter

webAppSession.addListener (event, callback, [context]) Add event listener.
Parameters:
e event (string) — name of event
e callback (function) — function to call when event is fired
* context (object) [optional] — object to bind to “this” value when calling function
Returns: object — reference to the same object to allow chaining

webAppSession.removeListener (event, [callback], [context]) Remove event listener with the specified callback and
context. If callback is null or undefined, all callbacks for this event will be removed.

Parameters:
e event (string) — name of event
* callback (function) [optional] — function originally passed to addListener
* context (object) [optional] — context object originally passed to addListener
Returns: object — reference to the same object to allow chaining
webAppSession.on (event, callback, [context]) Alias for addListener.
Parameters:
* event (string) — name of event
e callback (function) — function to call when event is fired
* context (object) [optional] — object to bind to “this”” value when calling function
Returns: object — reference to the same object to allow chaining
webAppSession.off (event, [callback], [context]) Alias for removeListener.
Parameters:
e event (string) — event name
* callback (function) [optional] — function originally passed to on
* context (object) [optional] — context object originally passed to on

Returns: object — reference to the same object to allow chaining

Mixin Methods - WrappedObject

webAppSession.acquire () Indicate that you would like to keep an active reference to this object. Wrapped objects
that are not acquired may be freed after the success callback returns.

Returns: object — reference to object

webAppSession.release () Release the reference to this object. After calling .release(), this object may no longer be
used. You should always release objects when you no longer need them, to avoid memory leaks.

274 Chapter 5. Promote Your TV App

connectSDK

5.13.4 Capabilities

ExternallnputControl
The ExternallnputControl capability serves to define the methods required for normalizing all functions regarding
external input switching and general info.
ExternallnputInfo objects are plain JavaScript objects with the following properties:
* id (string): A platform-specific id representing an input device

* name (string): A human-readable name for the input device

Methods

externalInputControl.getExternallnputList () Get a list of input devices (HDMI, AV, etc) connected to the device
On success, the success event/callback will be fired with the arguments (externallnputList)
 externallnputList: ExternallnputInfo[]
Related capabilities:
* ExternalInputControl.List
Returns: Command
externallnputControl.setExternallnput (externallnputInfo) Switch to the specified external input
Related capabilities:
* ExternalInputControl.Set
Parameters:

« externallnputInfo (object) — Object containing the proper info to set current input. For best cross-platform
support, it is suggested to get ExternallnputInfo references from getExternallnputList, if possible.

Returns: Command

externallnputControl.showExternallnputPicker () Returns: Command

KeyControl

The KeyControl capability serves to define the methods required for normalizing common key commands (up, down,
left right, ok, back, home, key code).

Methods

keyControl.up () Sends the up button key code to the TV.
Related capabilities:
¢ KeyControl.Up
Returns: Command
keyControl.down () Sends the down button key code to the TV.
Related capabilities:

* KeyControl.Down

5.13. API References 275

connectSDK

Returns: Command
keyControl.left () Sends the left button key code to the TV.
Related capabilities:
¢ KeyControl.Left
Returns: Command
keyControl.right () Sends the right button key code to the TV.
Related capabilities:
e KeyControl.Right
Returns: Command
keyControl.ok () Sends the OK button key code to the TV.
Related capabilities:
¢ KeyControl.OK
Returns: Command
keyControl.back () Sends the back button key code to the TV.
Related capabilities:
* KeyControl.Back
Returns: Command
keyControl.home () Sends the home button key code to the TV.
Related capabilities:
¢ KeyControl.Home
Returns: Command
keyControl.sendKeyCode (keyCode) Sends a key code value to the TV.
Related capabilities:
¢ KeyControl.Send.KeyCode
Parameters:
* keyCode (number) — Refer to the native Connect SDK device services for a list of keycodes

Returns: Command

Launcher
The Launcher capability protocol serves to define the methods required for normalizing the launching of apps. It

allows for in-built support for certain common launch types (deep-linking to YouTube, Netflix, Hulu, browser, etc) as
well as by (platform-specific) app id.

Methods

launcher.launchApp (appld) Launch an application on the device.

On success, the success event/callback will be fired with the arguments (launchSession)

276 Chapter 5. Promote Your TV App

connectSDK

¢ launchSession: LaunchSession
Related capabilities:
¢ Launcher.App
Parameters:
* appld (string) — ID of the application
Returns: Command
launcher.closeApp (appld) Close an application on the device.
Related capabilities:
* Launcher.App.Close
Parameters:
¢ appld (string)
Returns: Command
launcher.launchAppStore (appld) Launch the device’s app store app, optionally deep-linked to a specific app’s page.
On success, the success event/callback will be fired with the arguments (launchSession)
¢ launchSession: LaunchSession
Related capabilities:
* Launcher.AppStore
* Launcher.AppStore.Params
Parameters:
* appld (string) — (optional) ID of the application to show in the app store
Returns: Command

launcher.launchBrowser (url) Launch the web browser. Will launch deep-linked to provided URL, if supported on
the target platform.

On success, the success event/callback will be fired with the arguments (launchSession)
¢ JaunchSession: LaunchSession
Related capabilities:
* Launcher.Browser
* Launcher.Browser.Params — if launching with url
Parameters:
e url (string)
Returns: Command

launcher.launchHulu (contentld) Launch Hulu app. Will launch deep-linked to provided contentld, if supported on
the target platform.

On success, the success event/callback will be fired with the arguments (launchSession)
¢ JaunchSession: LaunchSession
Related capabilities:

e Launcher.Hulu

5.13. API References 277

connectSDK

e Launcher.Hulu.Params — if launching with contentld
Parameters:
 contentld (string) — Video id to open

Returns: Command

launcher.launchNetflix (contentld) Launch Netflix app. Will launch deep-linked to provided contentld, if supported
on the target platform.
On success, the success event/callback will be fired with the arguments (launchSession)

 JlaunchSession: LaunchSession
Related capabilities:

* Launcher.Netflix

* Launcher.Netflix.Params — if launching with contentld
Parameters:

 contentld (string) — Video id to open

Returns: Command

launcher.launchYouTube (contentld) Launch YouTube app. Will launch deep-linked to provided contentld, if sup-
ported on the target platform.

On success, the success event/callback will be fired with the arguments (launchSession)
* launchSession: LaunchSession

Related capabilities:
* Launcher.YouTube
* Launcher.YouTube.Params — if launching with contentld

Parameters:
* contentld (string) — Video id to open

Returns: Command

launcher.getAppList () Gets a list of all apps installed on the device.

On success, the success event/callback will be fired with the arguments (appList)
e appList: AppInfo[] — Each ApplInfo object contains:
— id (string): platform-specific appld
— name (string): human-readable name of app
Related capabilities:
e Launcher.App.List

Returns: Command

MediaControl

The MediaControl capability protocol serves to define the methods required for normalizing the control of media
playback (play, pause, fast forward, etc) as well as obtaining media information (playhead position, duration, etc).

278 Chapter 5. Promote Your TV App

connectSDK

Methods

mediaControl.play () Send play command.
Related capabilities:
* MediaControl.Play
Returns: Command
mediaControl.pause () Send pause command.
Related capabilities:
* MediaControl.Pause
Returns: Command
mediaControl.stop () Send play command.
Related capabilities:
* MediaControl.Stop
Returns: Command
mediaControl.rewind () Send rewind command.
Related capabilities:
* MediaControl.Rewind
Returns: Command
mediaControl.fastForward () Send play command.
Related capabilities:
* MediaControl.FastForward
Returns: Command
mediaControl.seek (position) Seeks to a new position within the current media item
Related capabilities:
¢ MediaControl. Seek
Parameters:
* position (number) — Media seek position in seconds
Returns: Command
mediaControl.getDuration () On success, the success event/callback will be fired with the arguments (duration)
e duration: number — duration in seconds
Returns: Command
mediaControl.getPosition () On success, the success event/callback will be fired with the arguments (position)
e position: number — position in seconds
Returns: Command

mediaControl.subscribePlayState () On success, the success event/callback will be fired with the arguments
(playState)

* playState: string — One of:

5.13. API References 279

connectSDK

— “unknown”
- “idle”

- “playing”
— “paused”
— “buffering”
— “finished”

Returns: Command

MediaPlayer

The MediaPlayer capability protocol serves to define the methods required for displaying media on the device.

Methods

mediaPlayer.displayImage (url, mimeType, [options]) Display an image on the device. Not all devices support all
of the parameters — supply as many as you have available.

On success, the success event/callback will be fired with the arguments (launchSession, mediaControl)
¢ launchSession: LaunchSession
» mediaControl: MediaControl
Related capabilities:
e MediaPlayer.Display.Image
e MediaPlayer.MediaData.Title
* MediaPlayer.MediaData.Description
* MediaPlayer.MediaData.Thumbnail
e MediaPlayer.MediaData.MimeType
Parameters:
* url (string)
* mimeType (string) — MIME type of the image, for example “image/jpeg”
* options (object) [optional] — All properties are optional:
— title (string): Title text to display
— description (string): Description text to display
— iconUrl (string): URL of icon to show next to the title
Returns: Command

mediaPlayer.playMedia (url, mimeType, [options]) Play an audio or video file on the device. Not all devices support
all of the parameters — supply as many as you have available.

On success, the success event/callback will be fired with the arguments (launchSession, mediaControl)
¢ JaunchSession: LaunchSession

¢ mediaControl: MediaControl

280 Chapter 5. Promote Your TV App

connectSDK

Related capabilities:

* MediaPlayer.Play.Video

* MediaPlayer.Play.Audio

e MediaPlayer.MediaData.Title

* MediaPlayer.MediaData.Description

e MediaPlayer.MediaData.Thumbnail

* MediaPlayer.MediaData.MimeType
Parameters:

e url (string)

» mimeType (string) — MIME type of the video, for example “video/mpeg4”, “audio/mp3”, etc

* options (object) [optional] — All properties are optional:

— title (string): Title text to display

description (string): Description paragraph to display

iconUrl (string): URL of icon to show next to the title

shouldLoop (boolean): Whether to automatically loop playback

subtitles {object} subtitle track with options (properties are optional unless specified otherwise):

* url (string) [required]: must be a valid URL
* mimeType (string)

* language (string)

x label (string)

Returns: Command

MouseControl

The MouseControl capability serves to define the methods required for normalizing a mouse/trackpad (move/scroll
with relative coordinates and click).

Methods

mouseControl.connectMouse () Establish a connection with the DeviceService’s mouse communication medium
(WebSocket, HTTP, etc). While this step may not be necessary with certain platforms, it is suggested to call
it anyways, for purposes of seamless normalization. Calling connect on a non-connectable protocol will just
trigger the success callback immediately.

Related capabilities:
* MouseControl.Connect
Returns: Command
mouseControl.disconnectMouse () Disconnects from the mouse communication medium.
Related capabilities:

e MouseControl.Disconnect

5.13. API References 281

connectSDK

Returns: Command
mouseControl.move (dx, dy) Move the mouse by the given distance values.
Related capabilities:
* MouseControl.Move
Parameters:
¢ dx (number) — Distance to move the mouse on the x-axis relative to its current position
* dy (number) — Distance to move the mouse on the y-axis relative to its current position
Returns: Command
mouseControl.scroll (dx, dy) Scroll by the given distance values.
Related capabilities:
* MouseControl.Scroll
Parameters:
* dx (number) — Distance to scroll the mouse on the x-axis relative to its current position
* dy (number) — Distance to scroll the mouse on the y-axis relative to its current position
Returns: Command
mouseControl.click () Perform a click action at the current mouse position.
Related capabilities:
* MouseControl.Click

Returns: Command

PlaylistControl

Methods

playlistControl.next () Jump playlist to the next track.
Related capabilities:
e PlaylistControl.Next
Returns: Command
playlistControl.previous () Jump playlist to the previous track.
Related capabilities:
e PlaylistControl.Previous
Returns: Command
playlistControl.jumpToTrack (index) Jump the playlist to the designated track.
Related capabilities:
e PlaylistControl.JumpToTrack
Parameters:

¢ index (number) — Playlist track index

282 Chapter 5. Promote Your TV App

connectSDK

Returns: Command

PowerControl

The PowerControl capability protocol serves to define the methods required for normalizing power off functionality.

Methods

powerControl.powerOff () Sends a power off signal to the TV. A success message will, internally, trigger a discon-
nection with the device.

Related capabilities:
* PowerControl.Off

Returns: Command

TVControl
The TVControl capability protocol serves to define the methods required for normalizing common TV-specific com-
mands (channel up/down, channel list, channel info, etc).
Channellnfo objects are plain JavaScript objects with the following properties:
¢ id (string): A platform-specific id used to identify the channel
* name (string): A human-readable name of the channel, if available
e number (string): Channel number such as “54-1”
* majorNumber (number): Major channel number

e minorNumber (minorNumber: Minor channel number (subchannel number)

Methods

tvControl.channelUp () Sends a channel up command to the TV.
Related capabilities:
¢ TVControl.Channel.Up
Returns: Command
tvControl.channelDown () Sends a channel down command to the TV.
Related capabilities:
¢ TVControl.Channel.Down
Returns: Command

tvControl.setChannel (channellnfo) Sets the current channel to the channel provided by the Channellnfo object
provided.

Related capabilities:
¢ TVControl.Channel.Set

Parameters:

5.13. API References 283

connectSDK

* channellnfo (object) — Channellnfo object containing information about the desired channel
Returns: Command
tvControl.getChannelList () Get a list of available channels from the TV.
On success, the success event/callback will be fired with the arguments (channellnfoList)
¢ channellnfoList: Channellnfo[]
Related capabilities:
¢ TVControl.Channel.List
Returns: Command
tvControl.getCurrentChannel () Gets the current channel info from the TV.
On success, the success event/callback will be fired with the arguments (channellnfo)
* channellnfo: Channellnfo
Related capabilities:
¢ TVControl.Channel.Get

Returns: Command

tvControl.subscribeCurrentChannel () Subscribes to any changes in the current channel. Each time the channel is
changed, the new channel’s info will be provided to the success callback.

On success, the success event/callback will be fired with the arguments (channellnfo)
¢ channellnfo: Channellnfo

Related capabilities:
e TVControl.Channel.Subscribe

Returns: Subscription

TextlnputControl

The TextInputControl capability serves to define the methods required for normalizing common text input commands
(send text, enter, delete, keyboard status).

Methods

textInputControl.sendText (input) Send text to the current text field.
Related capabilities:
e TextInputControl.Send.Text
Parameters:
* input (string)
Returns: Command
textInputControl.sendEnter () Send enter key to the current text field.
Related capabilities:

¢ TextInputControl.Send.Enter

284 Chapter 5. Promote Your TV App

connectSDK

Returns: Command
textInputControl.sendDelete () Send delete event to the current text field.
Related capabilities:
¢ TextInputControl.Send.Delete
Returns: Command
textInputControl.subscribeTextInputStatus () Subscribe to information about the current text field.
On success, the success event/callback will be fired with the arguments (textInputStatus)
* textInputStatus: TextInputStatus
Related capabilities:
¢ TextInputControl.Subscribe

Returns: Subscription

ToastControl

The ToastControl capability protocol serves to define the methods required for displaying toast messages on the TV.

Toasts may optionally provide an 80x80 pixel icon in PNG or JPEG format, encoded as base64. The icon will be
displayed alongside the toast message.

Methods

toastControl.showToast (message, [options]) Show a toast on the TV.
Parameters:
* message (string) — Message to display
Message to display
* options (object) [optional] —
— iconData (string): base64-encoded image
— iconExtension (string): file extension of icon (.png or .jpg)
Returns: Command

toastControl.showClickableToast (message, options) Show a toast on the TV and perform an action when the toast
is clicked on the TV.

Related capabilities:
e ToastControl.Show.Clickable.App
* ToastControl.Show.Clickable.App.Params
¢ ToastControl.Show.Clickable.URL
Parameters:
* message (string) — Message to display
Message to display

* options (object) —

5.13. API References 285

connectSDK

— iconData (string): base64-encoded image

— iconExtension (string): file extension of icon (.png or .jpg)
— appld (string): app to launch when clicked OR

— url (string): url to launch in browser when clicked

Returns: Command

VolumeControl

The VolumeControl capability protocol serves to define the methods required for normalizing common volume specific
commands (volume up/down, mute, etc).

Methods

volumeControl.getVolume () Get the current volume of the device.
On success, the success event/callback will be fired with the arguments (volume)
¢ volume: number
Related capabilities:
* VolumeControl.Get
Returns: Command
volumeControl.setVolume (volume) Set the volume of the device.
Related capabilities:
* VolumeControl. Set
Parameters:
¢ volume (float) — Volume as a float between 0.0 and 1.0
Returns: Command
volumeControl.volumeUp () Sends the volume up command to the device.
Related capabilities:
e VolumeControl.UpDown
Returns: Command
volumeControl.volumeDown () Sends the volume down command to the device.
Related capabilities:
e VolumeControl.UpDown
Returns: Command
volumeControl.getMute () Get the current mute state.
On success, the success event/callback will be fired with the arguments (mute)
* mute: boolean
Related capabilities:

e VolumeControl.Mute.Get

286 Chapter 5. Promote Your TV App

connectSDK

Returns: Command
volumeControl.setMute (mute) Set the current volume.
Related capabilities:
* VolumeControl.Mute. Set
Parameters:
¢ mute (boolean)
Returns: Command
volumeControl.subscribeMute () Subscribe to the mute state on the TV.
On success, the success event/callback will be fired with the arguments (mute)
* mute: boolean
Related capabilities:
* VolumeControl.Mute.Subscribe
Returns: Subscription
volumeControl.subscribe Volume () Subscribe to the volume on the TV.
On success, the success event/callback will be fired with the arguments (volume)
¢ volume: number
Related capabilities:
* VolumeControl.Subscribe

Returns: Subscription

WebAppLauncher

The WebAppLauncher capability protocol provides capabilities for launching web apps and establishing two-way
communication.

Methods

webAppLauncher.launchWebApp (webAppld, params) Launch a web application on the TV.
See WebAppSession for a detailed example.
On success, the success event/callback will be fired with the arguments (webAppSession)
* webAppSession: WebAppSession
Related capabilities:
* WebAppLauncher.Launch
* WebAppLauncher.Launch.Params — if launching with params
Parameters:
e webAppld (string) — ID of web app assigned by platform vendor
* params (object) — Dictionary of key/value strings. Not available on all target platforms

Returns: Command

5.13. API References 287

connectSDK

webAppLauncher.joinWebApp (webAppld, params) Join an active web app without launching/relaunching. If the
app is not running/joinable, the failure block will be called immediately.

On success, the success event/callback will be fired with the arguments (webAppSession)
* webAppSession: WebAppSession
Related capabilities:
* WebAppLauncher. Send
* WebAppLauncher.Receive
Parameters:
* webAppld (string) — Unique identifier for the web app to be joined
¢ params (object)
Returns: Command
webAppLauncher.closeWebApp (webAppld) Closes a web app with the provided LaunchSession.
Related capabilities:
* WebAppLauncher.Close
Parameters:
e webAppld (string)
Returns: Command
webAppLauncher.pinWebApp (webAppld) Parameters:
* webAppld (string)
Returns: Command
webAppLauncher.unPinWebApp (webAppld) Parameters:
* webAppld (string)
Returns: Command
webAppLauncher.isWebAppPinned (webAppld) Parameters:
* webAppld (string)
Returns: Command
webAppLauncher.subscribelsWebAppPinned (webAppld) Parameters:
* webAppld (string)

Returns: Command

5.13.5 Constants
AirPlayServiceMode

Properties

WEBAPP display media using a web app mirrored to the TV (iOS only)
MEDIA display media using AirPlay media playback APIs

288 Chapter 5. Promote Your TV App

connectSDK

KeyCodes

Properties

NUM_0 NUM_1 NUM_2 NUM_3 NUM_4 NUM_5 NUM_6 NUM_7 NUM_8 NUM_9 DASH ENTER

PairingLevel

Properties

ON access to capabilities that require pairing

OFF access to capabilities that don’t require pairing

PairingType
Properties

NONE Only connect if no pairing is required

FIRST_SCREEN Prompt the user on the TV to accept paring

PIN Display a PIN on the TV, require user to enter it on the device

MIXED Prompt the user on the TV to accept pairing. Also display a pin on the TV that the user can enter on the

device.

AIRPLAY_MIRRORING Require AirPlay mirroring to be enabled for connection (iOS only)

Services

Properties

Chromecast Chromecast

DIAL DIAL

DLNA DLNA

NetcastTV LG 2012/2013 Smart TV with Netcast
Roku Roku

WebOSTV LG 2014 Smart TV with webOS
FireTV Amazon FireTV

AirPlay Apple AirPlay

5.14 Getting Started

5.14.1 Modularization

5.14. Getting Started

289

connectSDK

Structure

The Connect SDK repositories are adopting a modular approach with 1.4.0 release. Our aim is to provide flexibility to
the developers to be able pick and choose between the various devices. Currently you can choose whether to include
Google Cast and Fire TV devices or not. We plan to include more device options in the upcoming releases.

The Connect SDK is split into modules with the help of git submodules. There are two options:

1. The full project (Connect-SDK-iOS and Connect-SDK-Android) includes three submodules: core, google-cast, and
firetv and thus provides the full feature set. The latter submodules are located in the modules directory.

2. The lite project (Connect-SDK-iOS-Lite and Connect-SDK-Android-Lite) includes the core submodule only, there-
fore there is no need to download any third-party dependencies.

Please refer to the figure below displaying dependencies between different modules and libraries (for iOS and An-
droid).

Components with a light green background are external dependencies. The dashed lines show the submodule links,
whereas the solid lines depict build and/or runtime dependencies.

Standard setup

1

ful e google-cast

& GoogleCast.framework

<t|------

core |

-——F-

lite

Lite setup

Fig. 2: Figure 1. i0S SDK Component Diagram (showing Google Cast submodule as an example)

Links to the repositories are provided in the next table:

Table 2: Table 1. Links to the repositories of i0S

Module Link

full https://github.com/ConnectSDK/Connect-SDK-iOS

lite https://github.com/ConnectSDK/Connect-SDK-iOS-Lite

core https://github.com/ConnectSDK/Connect-SDK-iOS-Core
google-cast | https:/github.com/ConnectSDK/Connect-SDK-i0S-Google-Cast
firetv https://github.com/ConnectSDK/Connect-SDK-iOS-FireTV

Usage instructions can be found in the full README or lite README.

290 Chapter 5. Promote Your TV App

https://github.com/ConnectSDK
https://developers.google.com/cast/
https://developer.amazon.com/apps-and-games/fire-tv
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://github.com/ConnectSDK/Connect-SDK-iOS
https://github.com/ConnectSDK/Connect-SDK-iOS-Lite
https://github.com/ConnectSDK/Connect-SDK-iOS-Core
https://github.com/ConnectSDK/Connect-SDK-iOS-Google-Cast
https://github.com/ConnectSDK/Connect-SDK-iOS-FireTV
https://github.com/ConnectSDK/Connect-SDK-iOS/blob/master/README.md
https://github.com/ConnectSDK/Connect-SDK-iOS-Lite/blob/master/README.md

connectSDK

Contributing

Since the source code is split between three repositories now (in the full version, whereas lite has only two), contribut-
ing is a bit more involved now. If you add a new feature across all the modules, you will have to create two GitHub
pull requests, one for each module. Our team will check the code and merge the changes into the submodules, then
update the full and lite repositories (as those just keep the project and track commits from the submodules). If you
have a simpler contributing workflow in mind, please let us know.

5.14.2 Setup Instructions

Using CocoaPods

1. Add pod "ConnectSDK" to your Podfile
2. Run pod install
3. Open the workspace file and run your project

Important: Unfortunately, Amazon Fling SDK is not distributed via CocoaPods, so we cannot include its support in
a subspec in an automated way. If you need it, please use the source ConnectSDK project directly.

You can use pod "ConnectSDK/Core" to get the lite version.

Without CocoaPods

1. Clone the repository (git clone https://github.com/ConnectSDK/Connect-SDK-i0S.git)

2. Set up the submodules by running the following command (in the Connect-SDK-10S/ directory in this
example): git submodule update —-init

Open your project in Xcode
Locate the Connect SDK Xcode project in Finder
Drag the Connect SDK Xcode project (Connect SDK.xcodepro3j) into your project’s Xcode library

Navigate to your target’s settings screen, then navigate to the “Build Phases” tab

N o AW

Add the following in the “Link Binary With Libraries” section:
¢ libConnectSDK.a
e libz.dylib
e libicucore.dylib
8. Navigate to the “Build Settings” tab and add —Ob jC to your target’s “Other Linker Flags”
9. Follow the setup instructions for the service submodules:
¢ Connect-SDK-10S-Google-Cast
* Connect-SDK-i0S-FireTV

If these steps are failing, try checking the repository for the latest setup instructions.

5.14. Getting Started 291

mailto:developer@lge.com
https://github.com/ConnectSDK/Connect-SDK-iOS-Lite
https://github.com/ConnectSDK/Connect-SDK-iOS-Google-Cast
https://github.com/ConnectSDK/Connect-SDK-iOS-FireTV
https://github.com/ConnectSDK/Connect-SDK-iOS/

connectSDK

Include Strings File for Localization (optional)

1. Locate the Connect SDK Xcode project in the Finder
2. Drag the ConnectSDKStrings folder into your project’s Resources folder

3. You may make whatever changes you would like to the values and the SDK will use your strings file

5.14.3 Discover & Connect to Device

Initial setup

Your view controller should implement delegate/listener methods for Connect SDK’s DevicePicker and Con-
nectableDevice classes. These methods will give you the ability to respond to device selection, ready, disconnect,
and error states.

@interface ViewController () <DevicePickerDelegate, ConnectableDeviceDelegate>
@end

It is helpful to retain local references to both the DiscoveryManager and the ConnectableDevice objects. In most use
cases, these two classes will serve to provide most of the functionality required.

@implementation ViewController

{
DiscoveryManager »*_discoveryManager;
ConnectableDevice +_device;

As soon as your app loads, you should instantiate the DiscoveryManager singleton and start discovery. As different
devices can take a wide range of time to be discovered, it is recommended that discovery start as soon as possible after
app launch.

- (void)viewDidLoad
{

[super viewDidLoad];

// This step could even happen in your app's delegate
_discoveryManager = [DiscoveryManager sharedManager];
[_discoveryManager startDiscovery];

Discovery & device selection

In many cases, your user will want to select one device from a list of many. You should present the DevicePicker to the
user to receive their selection. The DevicePicker includes a dynamic listing of all devices that have been discovered
on the network.

Passing the “sender” property of an IBAction will allow the SDK to present a popover view from a UI'View if the user
is on an iPad.

— (IBAction)hSharelImage: (id) sender

{
_discoveryManager.devicePicker.delegate = self;
[_discoveryManager.devicePicker showPicker:sender];

292 Chapter 5. Promote Your TV App

connectSDK

Once the user has selected a device, you should immediately register for events from that device and then call the
connect method.

- (void)devicePicker: (DevicePicker «)picker didSelectDevice: (ConnectableDevice,

—x)device

{
_device = device;
_device.delegate = self;

[_device connect];

Capability Filtering

If your app is making use of certain device capabilities (media playback/controls, web app launching, etc), it is strongly
recommended that you create filters with this information for DiscoveryManager.

Devices that are discovered & shown in the picker will be guaranteed to have the set of capabilities that you have
provided. This will prevent your users from selecting a device that has not yet acquired all of its protocols.

NSArray =videoCapabilities = @[
kMediaPlayerDisplayVideo,
kMediaControlAny,
kVolumeControlVolumeUpDown

1;

NSArray +*imageCapabilities = @[
kMediaPlayerDisplayImage
1;

CapabilityFilter *videoFilter = [CapabilityFilter
—filterWithCapabilities:videoCapabilities];
CapabilityFilter simageFilter = [CapabilityFilter

—filterWithCapabilities:imageCapabilities];

[[DiscoveryManager sharedManager] setCapabilityFilters:@[videoFilter, imageFilter]];

Check out the article on capabilities for more depth on this topic.

5.15 Developer Guides

5.15.1 Beam Media

A common use case with Connect SDK is to beam a simple media file (image, video, audio) to a TV. The following
is a quick example of how you can beam an image onto a TV. This example assumes that you have discovered and
connected to a device.

Beam an image file

NSURL »*mediaURL = [NSURL URLWithString:Q@"http://www.connectsdk.com/files/9613/9656/
—8539/test_image.Jjpg"1; // credit: Blender Foundation/CC By 3.0

NSURL *iconURL = [NSURL URLWithString:@"http://www.connectsdk.com/files/2013/9656/
—8845/test_image_icon.jpg"l; // credit: sintel-durian.deviantart.com

(continues on next page)

5.15. Developer Guides 293

connectSDK

(continued from previous page)

NSString *title = @"Sintel Character Design";
NSString xdescription = @"Blender Open Movie Project";
NSString *mimeType = @"image/jpeg";

MediaInfo *mediaInfo = [[MediaInfo alloc] initWithURL:mediaURL mimeType:mimeType];
mediaInfo.title = title;

mediaInfo.description = description;

ImageInfo ximageInfo = [[ImageInfo alloc] initWithURL:iconURL type:ImageTypeThumb];
[mediaInfo addImage:imageInfo];

__block MediaLaunchObject xlaunchObject;

[self.device.mediaPlayer displayImageWithMediaInfo:mediaInfo
success:
~ (MedialaunchObject smediaLaunchObject) {
NSLog(@"display photo success");

// save the object reference to control media playback
launchObject = mediaLaunchObject;

// enable your media control UI elements here

failure:
~(NSError =error) {
NSLog (@"display photo failure: %@", error.localizedDescription);

11

Beam an audio/video file

NSURL *mediaURL = [NSURL URLWithString:@"http://www.connectsdk.com/files/8913/9657/
—0225/test_video.mpd"]; // credit: Blender Foundation/CC By 3.0

NSURL *iconURL = [NSURL URLWithString:@"http://www.connectsdk.com/files/7313/9657/
—0225/test_video_icon.Jjpg"1; // credit: sintel-durian.deviantart.com

NSString xtitle = @"Sintel Trailer";

NSString xdescription = @"Blender Open Movie Project";

NSString smimeType = @"video/mp4"; // audio/+ for audio files

MediaInfo *mediaInfo = [[MediaInfo alloc] initWithURL:mediaURL mimeType:mimeTypel];
mediaInfo.title = title;

mediaInfo.description = description;

ImageInfo ximageInfo = [[ImageInfo alloc] initWithURL:iconURL type:ImageTypeThumb];
[mediaInfo addImage:imageInfo];

if ([self.device hasCapability:kMediaPlayerSubtitleWebVTT]) {
NSURL +#subtitlesURL = [NSURL URLWithString:@"http://ec2-54-201-108-205.us-west-2.
—compute.amazonaws.com/samples/media/sintel_en.vtt"];
SubtitleInfo xsubtitleInfo = [SubtitleInfo infoWithURL:subtitlesURL
andBlock: " (SubtitleInfoBuilder
—+builder) {
builder.mimeType = @"text/vtt";
builder.language = @"English";
builder.label = @"English,
—Subtitles";

mediaInfo.subtitleInfo = subtitleInfo;

(continues on next page)

294 Chapter 5. Promote Your TV App

connectSDK

(continued from previous page)

__block MediaLaunchObject xlaunchObject;

[self.device.mediaPlayer playMediaWithMediaInfo:mediaInfo
shouldLoop:NO
success:
"~ (MediaLaunchObject xmediaLaunchObject) {
NSLog (@"play video success");

// save the object reference to control media playback
launchObject = mediaLaunchObiject;

// enable your media control UI elements here

failure:
~(NSError xerror) |
NSLog (€"play video failure: %@", error.localizedDescription);

1

Control media playback

In the previous example, you will notice that the success block was called with a mediaControl object. In order to
control the media in the current playback session, you will need to store a reference to this mediaControl object and
call control methods on that object.

// pause media file
[launchObject .mediaControl pauseWithSuccess:nil failure:nil];

// play media file
[launchObject .mediaControl playWithSuccess:nil failure:nil];

// seek to 10 seconds
[launchObject .mediaControl seek:10 success:nil failure:nil];

// close media file

[launchObject.session closeWithSuccess:nil failure:nil];

// or

[self.device.mediaPlayer closeMedia:launchObject.session success:nil failure:nil];

Beam a playlist

NSURL #mediaURL = [NSURL URLWithString:@"your-playlist.m3u"];

NSURL *iconURL = [NSURL URLWithString:@"http://www.connectsdk.com/files/2013/9656/
—8845/test_image_icon.Jjpg"1l; // credit: sintel-durian.deviantart.com

NSString *title = @"Playlist";

NSString *description = @"Playlist description";

NSString smimeType = @"application/x-mpegurl";

MediaInfo *mediaInfo = [[MediaInfo alloc] initWithURL:mediaURL mimeType:mimeTypel];
mediaInfo.title = title;

mediaInfo.description = description;

ImageInfo ximageInfo = [[ImageInfo alloc] initWithURL:iconURL type:ImageTypeThumb];

(continues on next page)

5.15. Developer Guides 295

connectSDK

(continued from previous page)

[mediaInfo addImage:imageInfo];
__block MediaLaunchObject xlaunchObject;

[self.device.mediaPlayer playMediaWithMediaInfo:mediaInfo
shouldLoop:NO
success:
"~ (MediaLaunchObject xmediaLaunchObject) {
// save the object reference to control playlist and media playback
launchObject = mediaLaunchObject;

// enable your media control UI elements here

failure:
" (NSError #*error) {
NSLog(@"play playlist failure: %@", error.localizedDescription);
}1i

Control a playlist

// play previous track

[launchObject.playListControl playPreviousWithSuccess:nil failure:nil];

// play next track

[launchObject.playListControl playNextWithSuccess:nil failure:nil];

// play a track specified by index (starts from zero)
[launchObject.playListControl jumpToTrackWithIndex:0 success:nil failure:nil];

Note: For beaming media to AirPlay devices, you must set the AirPlayServiceMode to AirPlayServiceModeMedia.
See the API docs for more information.

5.15.2 Beam Web Apps

There are several platforms available that support the launching of web apps. A web app is typically run on a temporary
basis in a full-screen browser instance.

Web App IDs

Both webOS and Chromecast require a web app ID for API calls to launch and communicate with web apps. This web
app ID is translated into your web app’s URL on web app launch.

For information on creating a web app ID for webOS, please visit the LG registration site.

To learn how to register for a Chromecast web app ID, visit Google’s app ID registration site.

Launch web app with identifier

Connect SDK currently supports web app launching on webOS, Chromecast, and Apple TV devices. Both webOS
and Chromecast will translate a web app identifier into your web app’s URL.

296 Chapter 5. Promote Your TV App

http://lgsvl.com/connectSDK/index.php
https://developers.google.com/cast/docs/registration

connectSDK

NSString *webAppIld;

if ([_device serviceWithName:@"webOS TV"])
webAppId = @"5G7328DE";

else if ([_device serviceWithName:@"Chromecast"])
webAppId = @"3E5106AB";

else if ([_device serviceWithName:@"AirPlay"])
webAppId = @"http://www.example.com/";

if (!webAppId)
return;

[_device.webAppLauncher launchWebApp:webAppId success:” (WebAppSession xwebAppSession)
{

NSLog (@"web app launch success");
} failure:” (NSError xerror) {

NSLog (€"web app launch error: %@", error.localizedDescription);

i

Communicate with web app

Bi-directional communication with your web app is made extremely simple. Data can be sent and received strongly-
typed as a string or a keyed set of values (JSON object).

WebAppSession *_webAppSession;

[_device.webAppLauncher launchWebApp:webAppId success:” (WebAppSession xwebAppSession)
|

NSLog (@"web app launch success");

_webAppSession = webAppSession;
_webAppSession.delegate = self;

[_webAppSession connectWithSuccess:” (id responseObject) {
NSLog (@"web app connect success");
} failure:” (NSError xerror) {
NSLog (@"web app connect error: %@", error.localizedDescription);
11
} failure:” (NSError xerror) {
NSLog (€"web app launch error: %@", error.localizedDescription);
11

After successfully establishing a connection, you can send messages to your web app.

[_webAppSession sendText:@"This is a test message" success:nil failure:nil];

You can also send an NSDictionary which will be received by the web app as a JSON object.

NSDictionary xmessage = @{
@"someParameter" : @"someValue",
@"anArray": Q[

@"array value 1",
@"array value 2",
@"array value 3"
1,
@"anotherObject" : @{

(continues on next page)

5.15. Developer Guides 297

connectSDK

(continued from previous page)

@"anotherParameter" : @"anotherValue"

}i

[_webAppSession sendJSON:message success:nil failure:nil];

WebAppSessionDelegate allows you to receive messages from your web app.

<code>::

- (void) webAppSession: (WebAppSession *)webAppSession didReceiveMessage: (id)message {
// message may be either an NSString or an NSDictionary, depending on what was,_,
—sent from the web app
NSLog (@"Received message from web app %Q@", message);

Beam media to web app

A common use case for web apps is the playback and control of media files. Connect SDK provides capabilities

for directly playing/controlling media on a WebAppSession, provided that web app has integrated the Connect SDK
JavaScript Bridge.

Rather than calling playMedia on your device’s mediaPlayer, webAppSession provides its own mediaPlayer. After
media has been beamed into the web app, the control is just like any other media session.

MediaInfo smediaInfo = [[MediaInfo alloc] initWithURL:mediaURL mimeType:mimeType];
mediaInfo.title = title;

mediaInfo.description = description;

ImageInfo *imageInfo = [[ImageInfo alloc] initWithURL:iconURL type:ImageTypeThumb];
[mediaInfo addImage:imageInfo];

[webAppSession.mediaPlayer playMediaWithMediaInfo:mediaInfo
shouldLoop:NO
success:
~ (MedialaunchObject smediaLaunchObject) {
NSLog(@"play video success");

// save the object reference to control media playback
launchObject = mediaLaunchObject;

// enable your media control UI elements here

failure:
~"(NSError #*error) {
NSLog (@"play video failure: %@", error.localizedDescription);

p1i

Note: For beaming media to AirPlay devices, you must set the AirPlayServiceMode to AirPlayServiceModeMedia.
See the API docs for more information.

298 Chapter 5. Promote Your TV App

connectSDK

5.15.3 Launch App on TV

Many TVs and streaming players include support for launching installed apps. The following is a simplified example
of how to launch YouTube on a device.

Launch an app

[_device.launcher launchApp:@"YouTube" success:” (LaunchSession *launchSession) {
NSLog (@"app launch success");

} failure:” (NSError xerror) {
NSLog (@"app launch error: %@", error.localizedDescription);

11

Device-specific app identifiers
On each device (webOS TV, Roku, etc) apps are identified by different values. Here is an example of the different
identifiers in use for the YouTube app.

* webOS: youtube.leanback.v4 (value may change with future updates)

* Netcast: 0000000000017498 (value may be different on each TV)

* DIAL: YouTube (listed in DIAL registry)

* Roku: 837 (Roku-specific channel number)

Launching an app with device-specific identifiers

The following snippet shows how to detect the platform of your device and launch with the appropriate app identifier.

NSString *appld;

if ([_device serviceWithName:@"webOS TV"])
appld = @"youtube.leanback.v4";

else if ([_device serviceWithName:@"Netcast TV"])
appId = @"0000000000017498";

else if ([_device serviceWithName:@"Roku"])
appld = @"837";

else if ([_device serviceWithName:@"DIAL"])

applId = @"YouTube";

if (lappId)
return;

AppInfo xappInfo = [AppInfo appInfoForId:appId];
appInfo.name = @"YouTube";

[_device.launcher launchAppWithInfo:appInfo success:” (LaunchSession xlaunchSession) {
NSLog (@"app launch success");

} failure:” (NSError xerror) {
NSLog (€"app launch error: $@", error.localizedDescription);

i

5.15. Developer Guides 299

http://www.dial-multiscreen.org/dial-registry/namespace-database

connectSDK

Applinfo helper object

You will notice that the previous example refers to an AppInfo object. This object is used internally by Connect SDK
to manage an app’s protocol-specific properties. If a device supports app list, the app list will return a set of AppInfo
objects for each app installed on the TV.

Launching an app with parameters

In most cases, a device’s launcher object will allow you to pass launch parameters to your app. Connect SDK has
normalized the parameter input type to a keyed set of values. These values are then parsed into the appropriate format
for the protocol (XML, JSON, URL params, etc).

NSDictionary *params = @{
@"someProperty" : @"someValue"

}i

[_device.launcher launchAppWithInfo:appInfo params:params success:” (LaunchSession,
—+launchSession) {
NSLog (@"app launch success");
} failure:” (NSError #error) {
NSLog (€"app launch error: $@", error.localizedDescription);
}1i

Note: Due to the variety of protocols in use, it is strongly recommended that you only use strings for the keys AND
values of your parameters.

5.15.4 Discovery Manager

At the heart of Connect SDK is DiscoveryManager, a multi-protocol service discovery engine with a pluggable archi-
tecture. Much of your initial experience with Connect SDK will be with the DiscoveryManager class, as it consolidates
discovered service information into ConnectableDevice objects.

DiscoveryManager supports discovering services of differing protocols by using DiscoveryProviders. Many services
are discoverable over SSDP and are registered to be discovered with the SSDPDiscoveryProvider class.

As services are discovered on the network, the DiscoveryProviders will notify DiscoveryManager. DiscoveryManager
is capable of attributing multiple services, if applicable, to a single ConnectableDevice instance. Thus, it is possible to
have a mixed-mode ConnectableDevice object that is theoretically capable of more functionality than a single service
can provide.

DiscoveryManager keeps a running list of all discovered devices and maintains a filtered list of devices that have
satisfied any of your CapabilityFilters. This filtered list is used by the DevicePicker when presenting the user with a
list of devices.

Connect SDK device discovery can be started in one line.

[[DiscoveryManager sharedManager] startDiscovery];

Features

300 Chapter 5. Promote Your TV App

connectSDK

Filtering devices by capability

It will be necessary in many cases to filter out devices that don’t support a desired feature-set. DiscoveryManager
provides the setCapabilityFilters method to provide for this ability.

Here is a simple example that discovers devices that support (video playback AND any media controls AND volume
up/down) OR (image display).

NSArray =videoCapabilities = @[
kMediaPlayerDisplayVideo,
kMediaControlAny,
kVolumeControlVolumeUpDown

1i

NSArray *imageCapabilities = @[
kMediaPlayerDisplayImage
1i

CapabilityFilter xvideoFilter = [CapabilityFilter
—filterWithCapabilities:videoCapabilities];
CapabilityFilter *imageFilter = [CapabilityFilter

—filterWithCapabilities:imageCapabilities];

[[DiscoveryManager sharedManager] setCapabilityFilters:@[videoFilter, imageFilter]];

DeviceService registration

By default, Connect SDK is configured to discover all the services that it supports (webOS, Netcast, Chromecast,
AirPlay, DIAL, & Roku). It is possible to support only a subset of these services by manually registering those
services before starting DiscoveryManager for the first time.

[[DiscoveryManager sharedManager] registerDeviceService:[AirPlayService class]
—withDiscovery: [ZeroconfDiscoveryProvider class]];

[[DiscoveryManager sharedManager] registerDeviceService:[CastService class]
—withDiscovery: [CastDiscoveryProvider class]];

[[DiscoveryManager sharedManager] registerDeviceService: [DIALService class]
—withDiscovery: [SSDPDiscoveryProvider class]];

[[DiscoveryManager sharedManager] registerDeviceService:[RokuService class]
—withDiscovery: [SSDPDiscoveryProvider class]];

[[DiscoveryManager sharedManager] registerDeviceService:[DLNAService class]
—withDiscovery: [SSDPDiscoveryProvider class]]; // LG TV devices only, includes,_
—NetcastTVService

[[DiscoveryManager sharedManager] registerDeviceService: [WebOSTVService class] |,
—withDiscovery: [SSDPDiscoveryProvider class]];

Automatic stop/resume on app state change

If DiscoveryManager is running while your app enters a background state, it will resume immediately upon returning
to a foreground state. This is to prevent battery drain on the user’s device.

5.15. Developer Guides 301

connectSDK

Pairing level

Connect SDK has support for pairing with certain devices. To have pairing disabled may reduce the number of
supported capabilities that a ConnectableDevice has. Certain devices, although they may support the features you are
filtering for, may not pass your CapabilityFilter if pairing is disabled.

See the Supported Features list for information on what devices require pairing for certain capabilities.

For the best user experience, Connect SDK has disabled pairing by default. Pairing can be enabled very easily, but it
must be enabled before DiscoveryManager is started for the first time.

[DiscoveryManager sharedManager] .pairingLevel = DeviceServicePairingLevelOn;

Device store

When connecting with a device certain information is retained about that connection. This information is helpful for
app relaunches, pairing, remembering commonly-used devices, and more. Connect SDK provides a ConnectableDe-
viceStore protocol to allow you to store ConnectableDevice information in a manner that suits your use case.

A default implementation, DefaultConnectableDeviceStore, will be used by DiscoveryManager if no other Con-
nectableDeviceStore is provided to DiscoveryManager when startDiscovery is called.

See also:
* DiscoveryManager
* CapabilityFilter
* PairingLevel
* ConnectableDeviceStore

* DefaultConnectableDeviceStore

5.15.5 Checking Capabilities
Setting up filters

When you are discovering devices you are able to specify multiple capability filters.

NSArray =videoCapabilities = @[
kMediaPlayerDisplayVideo,
kMediaControlAny,
kVolumeControlVolumeUpDown

17

NSArray ximageCapabilities = @[
kMediaPlayerDisplayImage
1i

CapabilityFilter *videoFilter =

[CapabilityFilter filterWithCapabilities:videoCapabilities];
CapabilityFilter ximageFilter =

[CapabilityFilter filterWithCapabilities:imageCapabilities];

[[DiscoveryManager sharedManager] setCapabilityFilters:@[videoFilter, imageFilter]];

302 Chapter 5. Promote Your TV App

connectSDK

Any service that is found may meet the requirements of either filter but not both. When getting the Ul ready if a device
might have a capability you should always check before enabling that UI component.

[myImageButton setEnabled:[self.device hasCapability:kMediaPlayerDisplayImage]];

5.15.6 Resuming Apps
It may be necessary for your app to resume from a background or closed state and re-establish connection with a

previously connected device. There are many ways in which Connect SDK provides information to allow for this
behavior.

ConnectableDevice ID
Each ConnectableDevice has a unique ID assigned to it upon creation. When that device is connected to, the device

store saves information about each of the device’s services. The unique ID persists across app launches by attributing
service UUIDs to the unique device ID in the device store.

LaunchSession

The ability to interact with an app requires some information to persist, including a session ID. This session ID may
be required to close the app, as well as allow the app to accurately track certain state information.

WebAppSession

The ability to communicate with a web app requires a LaunchSession object and/or the web app id.

Resuming most recent connection

In order to save & reconnect to a previously connected device, all you need to keep track of is the device’s ID.
Assuming you are using the ConnectableDeviceStore included with Connect SDK, previously connected devices will
persist the same ID between app launches.

When your app restarts, you should immediately start discovery and listen for device found events from Discovery-
Manager. In these events, you can check each device’s ID and call connect on the previously connected device.

Important note about reconnecting

Just because your device has been discovered on the network doesn’t mean that all of its services/capabilities are
available. You will need to set a CapabilityFilter on DiscoveryManager or manually check the ConnectableDevice’s
capabilities before you call connect.

Save device ID to disk

ConnectableDevice xdevice; // device you've connected to
[[NSUserDefaults standardUserDefaults] setObject:device.id forKey:@"recentDeviceId"];

// save right away before entering background
[NSUserDefaults standardUserDefaults] synchronize];

5.15. Developer Guides 303

connectSDK

Reconnect to device

ConnectableDevice smDevice;
NSString smRecentDeviceld;

- (void) viewDidLoad {
[super viewDidLoad];

mRecentDevicelId = [[NSUserDefaults standardUserDefaults] objectForKey:@
—"recentDeviceId"];

[[DiscoveryManager sharedManager] setCapabilityFilters:myCapabilityFilters];
[[DiscoveryManager sharedManager] setDelegate:self];
[[DiscoveryManager sharedManager] start];

- (void) discoveryManager: (DiscoveryManager x)manager,
—didFindDevice: (ConnectableDevice «*)device {
if (mRecentDeviceld && !'mDevice) {
if ([device.id isEqualToString:mRecentDeviceId]) {
mDevice = device;
[device setDelegate:self];
[device connect];

Resuming a web app session

Resuming a web app session is as simple as saving the WebAppSession’s LaunchSession object before entering the
background. It can even be serialized into a JSON object for easy cross-platform storage.

Save session info to disk

WebAppSession swebAppSession; // retrieved from WebAppLauncher launch success block

LaunchSession *launchSession = webAppSession.launchSession;
NSDictionary =*launchSessionInfo = [launchSession toJSONObject];

[[NSUserDefaults standardUserDefaults] setObject:launchSessionInfo forKey:(
—"launchSession"];

// save right away before entering background
[NSUserDefaults standardUserDefaults] synchronize];

Re-create session after device is connected/ready

ConnectableDevice =*device; // device that has been re-discovered & re—connected

NSDictionary =launchSessionInfo = (NSDictionary =) [[NSUserDefaults,,
—standardUserDefaults] objectForKey:@"launchSession"];

LaunchSession xlaunchSession = [LaunchSession,
—launchSessionFromJSONObject:IaunchSessionInfo]; (continues on next page)

304 Chapter 5. Promote Your TV App

connectSDK

(continued from previous page)

[device.webAppLauncher joinWebApp:launchSession
success:” (WebAppSession xwebAppSession) { }
failure:” (NSError *) { } 1;

Low-effort re-connection option

Alternatively, you could re-join your web app with just the web app id. This could have the side effect of generating
new session information for your user, which may not be desired.

[device.webAppLauncher joinWebAppWithId:@"your web app id"
success: " (WebAppSession *webAppSession) { }
failure:” (NSError =) { } 1;

See also:
* Discover & Connect to Device
* Checking Capabilities
* Beam Web Apps

5.15.7 Screen Mirroring
With Connect SDK integrated in the mobile app, it can cast the screen and sound into the TV screen. This allows you

to extend the screen of a mobile app to a larger TV screen and share it with your family. Screen mirroring is a way to
display the entire app screen to the TV.

Note: This feature is only supported on webOS TV 22.

Requirements

Including the Connect SDK using CocoaPods and setting up for screen mirroring

Add pod "ConnectSDK" to your Podfile, and run pod install. Open the workspace file and run your
project.

Note that screen mirroring runs on iOS 12 and higher. In case of Broadcast Upload Extension for Screen Mirroring,
set the APPLICATION_EXTENSION_API_ONLY value to NO. Refer to the Podfile example below.

platform :ios, '12.0°'

def app_pods

pod 'ConnectSDK/Core', :git => 'https://github.com/ConnectSDK/Connect-SDK-i0S.git
—', :branch => 'master', :submodules => true
end

target 'ScreenMirroring-Sampler' do
use_frameworks!

app_pods

end

(continues on next page)

5.15. Developer Guides 305

connectSDK

(continued from previous page)

target 'ScreenMirroring-Extension-Sampler' do
use_frameworks!

app_pods

post_install do |installer|
installer.pods_project.targets.each do |target]
target.build_configurations.each do |config]
config.build_settings['APPLICATION_EXTENSION_API_ONLY'] = 'No'
end
end
end
end

ReplayKit - Broadcast Upload Extension

To capture iPhone screen, you need to implement Broadcast Upload Extension using Replay Kit. Refer to the link
below.

» AppleDeveloper - ReplayKit
* WWDC2020 Capture and stream apps on the Mac with ReplayKit

How to Use Screen Mirroring

To use screen mirroring, follow these steps.

1. Search Devices

Search for devices (TVs) connected to your home network. You can set the filter to only search for TVs that support
the screen mirroring function. Since the search for TVs takes some time, it should be started as soon as the app is
running.

— (void) startDiscoveryTV {
_isDiscoveringTV = YES;

if (_discoveryManager == nil) {
_discoveryManager = [DiscoveryManager sharedManager];

// Sets a device search filter (Screen Mirroring Capability) for devices that_,
—Support screen mirroring
NSArray capabilities = Q[
kScreenMirroringControlScreenMirroring

1;

CapabilityFilter xfilter = [CapabilityFilter filterWithCapabilities:capabilities];
[_discoveryManager setCapabilityFilters:@[filter]];
[_discoveryManager setPairinglLevel:DeviceServicePairinglLevelOn];
[_discoveryManager registerDeviceService: [WebOSTVService class]

—withDiscovery: [SSDPDiscoveryProvider class]];
[_discoveryManager startDiscovery];

306 Chapter 5. Promote Your TV App

https://developer.apple.com/documentation/replaykit
https://developer.apple.com/videos/play/wwdc2020/10633

connectSDK

2. Selecta TV

Select the TV to run the screen mirroring on by using the Picker.

_discoveryManager.devicePicker.delegate = self;
[_discoveryManager.devicePicker showPicker:nil];

Once the user has selected a device, the application needs to store that device identifier to find it. This sample code

uses NSUserDefaults to store its device identifier.

// MARK: DevicePickerDelegate
— (void)devicePicker: (DevicePicker «)pi

—x)device {
NSString *groupId = @"YOUR APP GROUP ID";
= [[NSUserDefaults alloc],,

NSUserDefaults xsharedDefaults =
—initWithSuiteName:groupId];

[sharedDefaults setObject:device.address,,
—forKey:kConnectableDeviceIpAddressKey];

[sharedDefaults synchronize];

cker didSelectDevice: (ConnectableDevice,,

3. Start Screen Mirroring

Now you can run the screen mirroring. Start capturing the screen by creating an RPSystemBroadcastPickerView.

if (Qavailable(iOS 12.0, =*)) {
RPSystemBroadcastPickerView srpPickerView

—initWithFrame:_rpPickerView.bounds];
rpPickerView.preferredExtension = @"YOUR EXTENSION BUNDLE ID";

= [[RPSystemBroadcastPickerView alloc],

rpPickerView.showsMicrophoneButton = NO;
UIButton xbutton = rpPickerView.subviews.firstObject;

button.imageView.tintColor = UIColor.whiteColor;

[_rpPickerView addSubview:rpPickerView];

} else {
/% UNAVAILABLE %/

After the screen capture starts, you need to search once again with the information of selected TV device stored in the

application.
— (instancetype) init {
self = [super init];
_discoveryManager = [DiscoveryManager sharedManager];

NSString xgroupId = @"YOUR APP GROUP ID";

NSUserDefaults xsharedDefaults = [[NSUserDefaults alloc],

—initWithSuiteName:groupId];
_deviceAddress = [sharedDefaults stringForKey:kConnectableDevicelpAddressKey];

NSArray xcapabilities = @[kScreenMirroringControlScreenMirroring 1];
CapabilityFilter xfilter = [CapabilityFilter filterWithCapabilities:capabilities];

[_discoveryManager setCapabilityFilters:@[filter]];
[_discoveryManager setPairinglLevel:DeviceServicePairingLevelOn];
[_discoveryManager registerDeviceService: [WebOSTVService class]

—withDiscovery: [SSDPDiscoveryProvider class]];
(continues on next page)

5.15. Developer Guides 307

connectSDK

(continued from previous page)

[_discoveryManager startDiscoveryl];
[_discoveryManager setDelegate:self];

return self;

If you find your TV again, get a ScreenMirroringControl object to use the screen mirroring API. And then, you should
immediately call the startScreenMirroring method.

// MARK: DiscoveryManagerDelegate

- (void)discoveryManager: (DiscoveryManager «)manager didFindDevice: (ConnectableDevice
—*)device {

if ([device.address caselnsensitiveCompare:_deviceAddress] != NSOrderedSame) {

return;

}

_device = device;

_screenMirroringControl = [_device screenMirroringControl];

if (_screenMirroringControl != nil) {

[_screenMirroringControl startScreenMirroring];
[_screenMirroringControl setScreenMirroringDelegate:self];

[_discoveryManager stopDiscoveryl];

Handle Runtime Errors
The following runtime errors might occur while the screen mirroring is running.
* When the network connection is terminated
* When the TV is turned off
* When the screen mirroring is terminated on the TV
* When the mobile device’s notification terminates the screen mirroring
* When other exceptions occurred

For these errors, it is necessary to receive the error in real-time through the listener and respond appropriately.

// MARK: ScreenMirroringControlDelegate
- (void) screenMirroringDidStart: (BOOL) result {
NSLog (@"screenMirroringDidStart %d", result);

— (wvoid) screenMirroringDidStop: (BOOL) result {
NSLog (@"screenMirroringDidStop %d", result);

- (void) screenMirroringErrorDidOccur: (ScreenMirroringError)error ({
NSLog (@"screenMirroringErrorDidOccur %d", error);
[self finishBroadcastWithError:NULL];

308 Chapter 5. Promote Your TV App

connectSDK

4. Broadcast Upload Extension Handling

You can get CMSampleBufferRef and RPSampleBufferType via SampleHandler’s processSampleBuffer:withType:. It
must be delivered to the screen mirroring API.

— (void)processSampleBuffer: (CMSampleBufferRef)sampleBuffer
—withType: (RPSampleBufferType) sampleBufferType {
// Handle video sample buffer and audio sample buffer for app
if (_screenMirroringControl != nil) {
[_screenMirroringControl pushSampleBuffer:sampleBuffer with:sampleBufferType];

5. Stop Screen Mirroring

When you want to stop mirroring, call stopScreenMirroring.

- (void)broadcastFinished {

// User has requested to finish the broadcast.

if (_screenMirroringControl != nil) {
[_screenMirroringControl stopScreenMirroring];

5.15.8 Remote Camera

With Connect SDK integrated in the mobile app, it can display camera preview on the TV screen. This allows you to
use your mobile device’s camera as a remote camera for the TV that does not have an internal or USB camera.

Note: This feature is only supported on webOS TV 22.

Requirements

Including the Connect SDK using CocoaPods and setting up for remote camera

Add pod "ConnectSDK" to your Podfile, and run pod install. Open the workspace file and run your
project.

Note that remote camera runs on iOS 12 and higher. Refer to the Podfile example below.

platform :ios, '12.0"

def app_pods

pod 'ConnectSDK/Core', :git => 'https://github.com/ConnectSDK/Connect-SDK-1i0S.git
—"'", :branch => 'master',6 :submodules => true
end

target 'RemoteCamera-Sampler' do
use_frameworks!
app_pods

end

5.15. Developer Guides 309

connectSDK

How to Use Remote Camera

To use a remote camera, follow the steps below.

1. Search Devices

Search for devices (TVs) connected to your home network. You can set the filter to only search for TVs that support
the remote camera function.

- (void)startDiscoveryTV ({
_isDiscoveringTV = YES;

if (_discoveryManager == nil) {
_discoveryManager = [DiscoveryManager sharedManager];

NSArray capabilities = Q[
kRemoteCameraControlRemoteCamera
17

CapabilityFilter xfilter = [CapabilityFilter filterWithCapabilities:capabilities];
[_discoveryManager setCapabilityFilters:@[filter]];
[_discoveryManager setPairinglLevel:DeviceServicePairinglLevelOn];
[_discoveryManager registerDeviceService: [WebOSTVService class]

—withDiscovery: [SSDPDiscoveryProvider class]];
[_discoveryManager startDiscovery];

2. Request Permissions

The remote camera function requires the camera and microphone permission. The user must grant these permissions
when the remote camera is first executed. Register NSCameraUsageDescription and NSMicrophoneUsageDescription
inInfo.plist.

<key>NSCameraUsageDescription</key>
<string></string>
<key>NSMicrophoneUsageDescription</key>
<string></string>

3. Selecta TV

Select the TV to run the remote camera on by using the Picker. Implement DevicePickerDelegate to receive TV
selection events.

_discoveryManager.devicePicker.delegate = self;
[_discoveryManager.devicePicker showPicker:nil];

Create a ViewController to display the camera preview after the TV is selected. You need to make ViewController
work only in landscape mode.

310 Chapter 5. Promote Your TV App

connectSDK

// MARK: DevicePickerDelegate
— (void)devicePicker: (DevicePicker x)picker didSelectDevice: (ConnectableDevice,
—x*)device {

RemoteCameraViewController xvc = [self.storyboard
—instantiateViewControllerWithIdentifier:@"RemoteCameraViewController"];

[ve setDevice:devicel;

[self presentViewController:vc animated:YES completion:nil];

Get a RemoteCameraControl object to use the remote camera API. And implement RemoteCameraControlDelegate
to receive events that occur during remote camera operation.

_remoteCameraControl = [_device remoteCameraControl];
[_remoteCameraControl setRemoteCameraDelegate:self];

4. Start Remote Camera

Now you can run the remote camera. First, connect with the selected TV device through startRemoteCamera of
RemoteCameraControl. Then show the camera preview in the returned UIView. Paring is required if this is the first
time connecting to a TV.

UIView spreviewView = [_remoteCameraControl startRemoteCameral;
[previewView setFrame:UIScreen.mainScreen.bounds];

[self.view addSubview:previewView];

[self.view sendSubviewToBack:previewView];

5. Start Camera Playback

Select iPhone camera on your TV. It will start sending and playing the camera stream. At this time, you can receive
callbacks by designating a delegate.

// MARK: RemoteCameraControlDelegate
— (void) remoteCameraDidPlay {
NSLog (@"remoteCameraDidPlay") ;

— (void) remoteCameraDidChange: (RemoteCameraProperty)property {

NSLog (@"remoteCameraDidChange") ;

6. Stop Remote Camera

When you want to stop the remote camera, call stopRemoteCamera.

if (_remoteCameraControl != nil) {
[_remoteCameraControl stopRemoteCameral;
_remoteCameraControl = nil;

5.15. Developer Guides 311

connectSDK

Features

Change Camera Property

You can change camera properties such as brightness and AWB on the TV, and you can receive callbacks by designat-
ing a delegate.

// MARK: RemoteCameraControlDelegate
— (void) remoteCameraDidChange: (RemoteCameraProperty)property {
NSLog (@"remoteCameraDidChange") ;

Handle Runtime Errors

The following runtime error might occur while the remote camera is running.
* When the network connection is terminated
¢ When the TV is turned off
* When the remote camera is terminated on the TV
* When the mobile device’s notification terminates the remote camera
* When other exceptions occurred

For these errors, it is necessary to receive the error in real-time through the listener and respond appropriately.

- (void) remoteCameraErrorDidOccur: (RemoteCameraError)error |
NSLog (@"remoteCameraErrorDidOccur") ;

if (_remoteCameraControl != nil) {
[_remoteCameraControl stopRemoteCameral;
_remoteCameraControl = nil;

Also, if the app is in the background state, the remote camera function does not work, so you have to handle these
situations appropriately.

- (void)viewDidAppear: (BOOL) animated {
[super viewDidAppear:animated];

[[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector (didEnterBackground)

—name:UIApplicationDidEnterBackgroundNotification object:nil];

}

— (void)didEnterBackground {

if (_remoteCameraControl != nil) {
[_remoteCameraControl stopRemoteCameral;
_remoteCameraControl = nil;

}

(continues on next page)

312 Chapter 5. Promote Your TV App

connectSDK

(continued from previous page)

- (void)viewWillDisappear: (BOOL)animated {
[super viewWillDisappear:animated];

[[NSNotificationCenter defaultCenter] removeObserver:self
—name:UIApplicationDidEnterBackgroundNotification
object:nil];

Set the Microphone Mute State

If you change the microphone mute state, it must be transmitted. The app must maintain the current mute setting value.

if (_remoteCameraControl != nil) {
[_remoteCameraControl setMicMute:_isMuted];

Switch between Front and Back Cameras

When the direction of the camera is switched between front and rear, the camera direction is transmitted. The app
must maintain the current camera direction value.

if (_remoteCameraControl != nil) {
[_remoteCameraControl setLensFacing:lensFacing];

5.15.9 FAQ

When do | start the DiscoveryManager?
We recommend starting the DiscoveryManager when the app is started so that devices can be discovered and ready for
use by the time the Ul is loaded.

If you need to start the discovery later or only during a specific activity within your app you should be aware that it
can take a few seconds for devices to be discovered.

How do | reconnect to a device on resume?

When your app goes into the background you can hold onto a ConnectableDevice object. When your app resumes
you have the reference to the ConnectableDevice and you can listen for the Device ready function. Once the device is
ready you can call connect and begin using it again.

How do | re-connect to a Web App when app resumes?

When a WebApp is launched on a TV you get a reference to that WebApp’s WebAppSession object. When your
phone’s application goes into the background you can hold onto that WebAppSession object for the next time your
application is in the foreground. Once your app is in the foreground again and you get a ConnectableDevice object.

5.15. Developer Guides 313

connectSDK

connectableDeviceReady:

Then once the method is called you can use the stored WebAppSession object to continue to send commands to the
running app.

How do | get the number of devices discovered?

When you start an app you should always assume that there are 0 devices discovered. Using the DiscoveryMan-
agerDelegate you will be notified whenever a new device is discovered and an existing device has been lost.

discoveryManager:didFindDevice:
discoveryManager:didLoseDevice:

When either of these methods are called you can reference the compatibleDevices property of the sharedManager to
get a complete list of devices that match your filters.

When there are no compatible devices your Ul should reflect this by hiding the beam icon.

How do create an ADHoc list of devices?

When you specify your device filters you may have devices that don’t support every feature. If you are searching for
all devices that can either display an image or play a YouTube video then you want to show a list of all the devices that
can show an image.

To do this you will need to check that each device in the compatibleDevices array has the capabilities that you are
looking for.

- (NSArray =*) getlImageDevices

{
NSMutableArray *imageDevices = [NSMutableArray new];

for (ConnectableDevice xdevice in [DiscoveryManager sharedManager].
—compatibleDevices)

{
if ([device hasCapability:kMediaPlayerDisplayImage])
[imageDevices addObject:device];

return imageDevices;

How do | show an image or video from my device?

All videos that are sent with the Connect SDK are links to external web content and your device is no different. You
can setup a quick HTTP server and pass the url of your phone with Connect SDK. The media player will reach to your
HTTP server and stream your content right from there.

There are some pre-made libraries that already do the heavy lifting for you.

Checkout: CocoaHTTPServer

314 Chapter 5. Promote Your TV App

https://github.com/robbiehanson/CocoaHTTPServer

connectSDK

5.16 API References

5.16.1 Discovery
CapabilityFilter

CapabilityFilter is an object that wraps an NSArray of required capabilities. This CapabilityFilter is used for determin-
ing which devices will appear in DiscoveryManager’s compatibleDevices array. The contents of a CapabilityFilter’s
array must be any of the string constants defined in the Capability header files.

CapabilityFilter values

Here are some examples of values for the Capability constants.
* kMediaPlayerPlayVideo = “MediaPlayer.Display.Video”
* kMediaPlayerDisplaylmage = “MediaPlayer.Display.Image”
* kVolumeControlSubscribe = “VolumeControl.Subscribe”
¢ kMediaControlAny = “Media.Control.Any”

All Capability header files also define a constant array of all capabilities defined in that header (ex. kVolumeControl-
Capabilities).

AND/OR Filtering

CapabilityFilter is an AND filter. A ConnectableDevice would need to satisfy all conditions of a CapabilityFilter to
pass.

[DiscoveryManager capabilityFilters] is an OR filter. a ConnectableDevice only needs to satisfy one condition (Capa-
bilityFilter) to pass.

Examples

Filter for all devices that support video playback AND any media controls AND volume up/down.

NSArray xcapabilities = @[
kMediaPlayerPlayVideo,
kMediaControlAny,
kVolumeControlVolumeUpDown

1;

CapabilityFilter xfilter =
[CapabilityFilter filterWithCapabilities:capabilities];

[[DiscoveryManager sharedManager] setCapabilityFilters:@[filter]];

Filter for all devices that support (video playback AND any media controls AND volume up/down) OR (image dis-
play).

5.16. API References 315

connectSDK

NSArray =videoCapabilities = @[
kMediaPlayerPlayVideo,
kMediaControlAny,
kVolumeControlVolumeUpDown

1i

NSArray +*imageCapabilities = @[
kMediaPlayerDisplayImage
1i

CapabilityFilter *videoFilter =

[CapabilityFilter filterWithCapabilities:videoCapabilities];
CapabilityFilter ximageFilter =

[CapabilityFilter filterWithCapabilities:imageCapabilities];

[[DiscoveryManager sharedManager] setCapabilityFilters:@[videoFilter, imageFilter]];

Properties

NSArray * capabilities Array of capabilities required by this filter. This property is readonly use the addCapability
or addCapabilities to build this object.

Methods

+ (CapabilityFilter *) filter WithCapabilities:(NSArray *)capabilities Create a CapabilityFilter with the given array
required capabilities.

Parameters
* capabilities — Capabilities to be added to the new filter
- (void) addCapability:(NSString *)capability Add a required capability to the filter.
Parameters
e capability — Capability name to add (see capability header files for NSString constants)
- (void) addCapabilities:(NSArray *)capabilities Add array of required capabilities to the filter.
Parameters

* capabilities — List of capability names (see capability header files for NSString constants)
DevicePicker
Overview

The DevicePicker is provided by the DiscoveryManager as a simple way for you to present a list of available devices
to your users.

In Depth

The DevicePicker takes a sender parameter on the showPicker method. The sender parameter is used to display a
popover from a particular UI'View on iPads.

316 Chapter 5. Promote Your TV App

connectSDK

You should not attempt to instantiate the DevicePicker on your own. Instead, get the reference from the DeviceManager
with [[DeviceManager sharedManager| devicePicker];

Properties

id<DevicePickerDelegate> delegate Delegate that receives selected/cancelled messages.

BOOL shouldAnimatePicker When the showPicker method is called, it can animate onto the screen if this value is
set to YES. This value will also be used to determine if the picker should animate when it is dismissed.

BOOL shouldAutoRotate When the device is rotated, the DevicePicker can automatically adjust the view to com-
penstate. Default is NO.

ConnectableDevice * currentDevice If you wish to show a checkmark next to a device in the picker, you can set that
device object to currentDevice. The setter for currentDevice will also reload the tableView in the picker.

Methods

- (void) showPicker:(id)sender This method will animate the picker onto the screen. On iPad, the picker will appear
as a popover view and will animate from the sender object, if you provide one. On iPhone, the picker will appear
as a full-screen table view that will animate up from the bottom of the screen. This picker will animate in real
time with additions, losses, and updates of ConnectableDevices.

Parameters:

 sender — On iPad, this should be a UIView for the popover view to animate from. On iPhone, this property
is ignored.

- (void) showActionSheet:(id)sender This method will animate an action sheet onto the screen containing a button
for each discovered ConnectableDevice. Due to the nature of action sheets, it is not possible to update the action
sheet after it has appeared. It is recommended to use the showPicker: method if you want a picker that will
update in real time.

Parameters:

 sender — The UIView that the action sheet should appear in

DevicePickerDelegate

The DevicePickerDelegate will receive a message when the user cancels or selects a ConnectableDevice from the
DevicePicker list. This is the preferred method of selecting a device from DiscoveryManager.

Methods

- (void) devicePicker:(DevicePicker *)picker didSelectDevice:(ConnectableDevice *)device When the user selects
a ConnectableDevice from the DevicePicker’s list, this method will be called with the selected ConnectableDe-
vice.

Parameters:
* picker — DevicePicker that device was selected from

¢ didSelectDevice: device — ConnectableDevice that was selected by the user

5.16. API References 317

connectSDK

- (void) devicePicker:(DevicePicker *)picker didCancel WithError:(NSError *)error This method is called if the
user presses the cancel button in the picker or if Connect SDK forces a cancellation. If Connect SDK forces a
cancellation, there will be an NSError object passed with the reason.

Parameters:
* picker — DevicePicker that was cancelled

» didCancelWithError: error — NSError with a description of the failure

DiscoveryManager

Overview

At the heart of Connect SDK is DiscoveryManager, a multi-protocol service discovery engine with a pluggable archi-
tecture. Much of your initial experience with Connect SDK will be with the DiscoveryManager class, as it consolidates
discovered service information into ConnectableDevice objects.

In depth

DiscoveryManager supports discovering services of differing protocols by using DiscoveryProviders. Many services
are discoverable over SSDP and are registered to be discovered with the SSDPDiscoveryProvider class.

As services are discovered on the network, the DiscoveryProviders will notify DiscoveryManager. DiscoveryManager
is capable of attributing multiple services, if applicable, to a single ConnectableDevice instance. Thus, it is possible to
have a mixed-mode ConnectableDevice object that is theoretically capable of more functionality than a single service
can provide.

DiscoveryManager keeps a running list of all discovered devices and maintains a filtered list of devices that have
satisfied any of your CapabilityFilters. This filtered list is used by the DevicePicker when presenting the user with a
list of devices.

Only one instance of the DiscoveryManager should be in memory at a time. To assist with this, DiscoveryManager
has singleton accessors at sharedManager and sharedManagerWithDeviceStore:.

Example:
DiscoveryManager *discoveryManager = [DiscoveryManager sharedManager];
discoveryManager.delegate = self; // set delegate to listen for discovery events

[discoveryManager startDiscoveryl];

Properties

id<DiscoveryManagerDelegate> delegate Delegate which should receive discovery updates. It is not necessary to
set this delegate property unless you are implementing your own device picker. Connect SDK provides a default
DevicePicker which acts as a DiscoveryManagerDelegate, and should work for most cases.

If you have provided a capabilityFilters array, the delegate will only receive update messages for ConnectableDe-
vices which satisfy at least one of the CapabilityFilters. If no capabilityFilters array is provided, the delegate
will receive update messages for all ConnectableDevice objects that are discovered.

NSArray * capabilityFilters A ConnectableDevice will be displayed in the DevicePicker and compatibleDevices
array if it matches any of the CapabilityFilter objects in this array.

318 Chapter 5. Promote Your TV App

http://tools.ietf.org/html/draft-cai-ssdp-v1-03

connectSDK

DeviceServicePairingLevel pairingLevel The pairinglevel property determines whether capabilities that require
pairing (such as entering a PIN) will be available.

If pairingLevel is set to DeviceServicePairingLevelOn, ConnectableDevices that require pairing will prompt the
user to pair when connecting to the ConnectableDevice.

If pairingLevel is set to DeviceServicePairingLevel Off (the default), connecting to the device will avoid requir-
ing pairing if possible but some capabilities may not be available.

id<ConnectableDeviceStore> deviceStore ConnectableDeviceStore object which loads & stores references to all dis-
covered devices. Pairing codes/keys, SSL certificates, recent access times, etc are kept in the device store.

ConnectableDeviceStore is a protocol which may be implemented as needed. A default implementation, De-
faultConnectableDeviceStore, exists for convenience and will be used if no other device store is provided.

In order to satisfy user privacy concerns, you should provide a Ul element in your app which exposes the
ConnectableDeviceStore removeAll method.

To disable the ConnectableDeviceStore capabilities of Connect SDK, set this value to nil. This may be done at
the time of instantiation with [DiscoveryManager sharedManagerWithDeviceStore:nil].

BOOL useDeviceStore Whether pairing state will be automatically loaded/saved in the deviceStore. This property is
not available for direct modification. To disable the device store,

Methods

+ (instancetype) sharedManager Singleton accessor for DiscoveryManager. This method calls sharedManager-
WithDeviceStore: and passes an instance of DefaultConnectableDeviceStore.

+ (instancetype) sharedManager WithDeviceStore:(id<ConnectableDeviceStore>)deviceStore Singleton accessor
for DiscoveryManager, will initialize singleton with reference to a custom ConnectableDeviceStore object.

Parameters:

¢ deviceStore — (optional) An object which implements the ConnectableDeviceStore protocol to be used for
save/load of device information. You may provide nil to completely disable the device store capabilities of
the SDK.

- (NSDictionary *) compatibleDevices Filtered list of discovered ConnectableDevices, limited to devices that match
at least one of the CapabilityFilters in the capabilityFilters array. Each ConnectableDevice object is keyed
against its current IP address.

- (NSDictionary *) allDevices List of all devices discovered by DiscoveryManager. Each ConnectableDevice object
is keyed against its current IP address.

- (void) startDiscovery Start scanning for devices on the local network.
- (void) stopDiscovery Stop scanning for devices.

This method will be called when your app enters a background state. When your app resumes, startDiscovery
will be called.

- (DevicePicker *) devicePicker Get a DevicePicker to show compatible ConnectableDevices that have been found
by DiscoveryManager.

Returns: DevicePickerDevicePicker singleton for use in picking devices

DiscoveryManagerDelegate

5.16. API References 319

connectSDK

Overview

The DiscoveryManagerDelegate will receive events on the addition/removal/update of ConnectableDevice objects.

In Depth

It is important to note that, unless you are implementing your own device picker, this delegate is not needed in your
code. Connect SDK’s DevicePicker internally acts a separate delegate to the DiscoveryManager and handles all of the
same method calls.

Methods

- (void) discoveryManager:(DiscoveryManager *)manager didFindDevice:(ConnectableDevice *)device This
method will be fired upon the first discovery of one of a ConnectableDevice’s DeviceServices.

Parameters:
* manager — DiscoveryManager that found device
¢ didFindDevice: device — ConnectableDevice that was found

- (void) discoveryManager:(DiscoveryManager *)manager didLoseDevice:(ConnectableDevice *)device This
method is called when connections to all of a ConnectableDevice’s DeviceServices are lost. This will usually
happen when a device is powered off or loses internet connectivity.

Parameters:
* manager — DiscoveryManager that lost device
¢ didLoseDevice: device — ConnectableDevice that was lost

- (void) discoveryManager:(DiscoveryManager *)manager didUpdateDevice:(ConnectableDevice *)device This
method is called when a ConnectableDevice gains or loses a DeviceService in discovery.

Parameters:
* manager — DiscoveryManager that updated device
» didUpdateDevice: device — ConnectableDevice that was updated

- (void) discoveryManager:(DiscoveryManager *)manager didFailWithError:(NSError *)error In the event of
an error in the discovery phase, this method will be called.

Parameters:
* manager — DiscoveryManager that experienced the error

e didFailWithError: error — NSError with a description of the failure

5.16.2 Device

ConnectableDevice

Overview

ConnectableDevice serves as a normalization layer between your app and each of the device’s services. It consolidates
a lot of key data about the physical device and provides access to underlying functionality.

320 Chapter 5. Promote Your TV App

connectSDK

In Depth

ConnectableDevice consolidates some key information about the physical device, including model name, friendly
name, ip address, connected DeviceService names, etc. In some cases, it is not possible to accurately select which
DeviceService has the best friendly name, model name, etc. In these cases, the values of these properties are dependent
upon the order of DeviceService discovery.

To be informed of any ready/pairing/disconnect messages from each of the DeviceService, you must set a delegate.

ConnectableDevice exposes capabilities that exist in the underlying DeviceServices such as TV Control, Media Player,
Media Control, Volume Control, etc. These capabilities, when accessed through the ConnectableDevice, will be
automatically chosen from the most suitable DeviceService by using that DeviceService’s CapabilityPriorityLevel.

Properties

id<ConnectableDeviceDelegate > delegate Delegate which should receive messages on certain events.

NSString * id Universally unique ID of this particular ConnectableDevice object, persists between sessions in Con-
nectableDeviceStore for connected devices

NSString * address Current IP address of the ConnectableDevice.

NSString * friendlyName An estimate of the ConnectableDevice’s current friendly name.

NSString * modelName An estimate of the ConnectableDevice’s current model name.

NSString * modelNumber An estimate of the ConnectableDevice’s current model number.

NSString * lastKnownIPAddress Last IP address this ConnectableDevice was discovered at.

NSString * lastSeenOnWifi Name of the last wireless network this ConnectableDevice was discovered on.
double lastConnected Last time (in seconds from 1970) that this ConnectableDevice was connected to.
double lastDetection Last time (in seconds from 1970) that this ConnectableDevice was detected.

BOOL isConnectable Whether the device has any DeviceServices that require an active connection (websocket,
HTTP registration, etc)

BOOL connected Whether all the DeviceServices are connected.
NSArray * services Array of all currently discovered DeviceServices this ConnectableDevice has associated with it.
BOOL hasServices Whether the ConnectableDevice has any running DeviceServices associated with it.

NSArray * capabilities A combined list of all capabilities that are supported among the detected DeviceServices.

Methods

- (void) connect Enumerates through all DeviceServices and attempts to connect to each of them. When all of a
ConnectableDevice’s DeviceServices are ready to receive commands, the ConnectableDevice will send a con-
nectableDeviceReady: message to its delegate.

It is always necessary to call connect on a ConnectableDevice, even if it contains no connectable DeviceServices.
- (void) disconnect Enumerates through all DeviceServices and attempts to disconnect from each of them.

- (void) addService:(DeviceService *)service Adds a DeviceService to the ConnectableDevice instance. Only one
instance of each DeviceService type (webOS, Netcast, etc) may be attached to a single ConnectableDevice
instance. If a device contains your service type already, your service will not be added.

Parameters:

5.16. API References 321

connectSDK

¢ service — DeviceService to be added to the ConnectableDevice

- (void) removeServiceWithId:(NSString *)serviceld Removes a DeviceService from the ConnectableDevice in-
stance. serviceld is used as the identifier because only one instance of each DeviceService type may be attached
to a single ConnectableDevice instance.

Parameters:
¢ serviceld — Id of the DeviceService to be removed from the ConnectableDevice

- (DeviceService *) serviceWithName:(NSString *)serviceld Obtains a service from the device with the provided
serviceld

Parameters:
« serviceld — Service ID of the targeted DeviceService (webOS, Netcast, DLNA, etc)
Returns: DeviceService with the specified serviceld or nil, if none exists

- (BOOL) hasCapability:(NSString *)capability Test to see if the capabilities array contains a given capability. See
the individual Capability classes for acceptable capability values.

It is possible to append a wildcard search term . Any to the end of the search term. This method will return true
for capabilities that match the term up to the wildcard.

Example: Launcher.App.Any
Parameters:
e capability — Capability to test against

- (BOOL) hasCapabilities:(NSArray *)capabilities Test to see if the capabilities array contains a given set of capa-
bilities. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.
Parameters:
* capabilities — Array of capabilities to test against

- (BOOL) hasAnyCapability:(NSArray *)capabilities Test to see if the capabilities array contains at least one ca-
pability in a given set of capabilities. See the individual Capability classes for acceptable capability values.

See hasCapability: for a description of the wildcard feature provided by this method.
Parameters:
* capabilities — Array of capabilities to test against

- (void) setPairingType:(DeviceServicePairingType)pairingType Set the type of pairing for the ConnectableDevice
services. By default the value will be DeviceServicePairingTypeNone

For WebOSTV’s If pairingType is set to DeviceServicePairing TypeFirstScreen(default), the device will prompt
the user to pair when connecting to the ConnectableDevice.

If pairingType is set to DeviceServicePairingTypePinCode, the device will prompt the user to enter a pin to pair
when connecting to the ConnectableDevice.

Parameters:
* pairingType — value to be set for the device service from DeviceServicePairingType
- (id<Launcher >) launcher
- (id<ExternallnputControl >) externallnputControl Accessor for highest priority Launcher object

- (id<MediaPlayer >) mediaPlayer Accessor for highest priority ExternallnputControl object

322 Chapter 5. Promote Your TV App

connectSDK

- (id<MediaControl >) mediaControl Accessor for highest priority MediaPlayer object

- (id<VolumeControl >) volumeControl Accessor for highest priority MediaControl object

- (id<TVControl >) tvControl Accessor for highest priority VolumeControl object

- (id<KeyControl >) keyControl Accessor for highest priority TVControl object

- (id<TextInputControl >) textInputControl Accessor for highest priority KeyControl object
- (id<MouseControl >) mouseControl Accessor for highest priority TextInputControl object
- (id<PowerControl >) powerControl Accessor for highest priority MouseControl object

- (id<ToastControl >) toastControl Accessor for highest priority PowerControl object

- (id<WebAppLauncher >) webAppLauncher Accessor for highest priority ToastControl object

ConnectableDeviceDelegate
ConnectableDeviceDelegate allows for a class to receive messages about ConnectableDevice connection, disconnect,
and update events.

It also serves as a delegate proxy for message handling when connecting and pairing with each of a ConnectableDe-
vice’s DeviceServices. Each of the DeviceService proxy methods are optional and would only be useful in a few use
cases.

* providing your own Ul for the pairing process.

* interacting directly and exclusively with a single type of DeviceService

Methods

- (void) connectableDeviceReady:(ConnectableDevice *)device A ConnectableDevice sends out a ready message
when all of its connectable DeviceServices have been connected and are ready to receive commands.

Parameters:
¢ device — ConnectableDevice that is ready for commands.

- (void) connectableDeviceDisconnected:(ConnectableDevice *)device withError:(NSError *)error When all of
a ConnectableDevice’s DeviceServices have become disconnected, the disconnected message is sent.

Parameters:
¢ device — ConnectableDevice that has been disconnected.
¢ withError: error

- (void) connectableDevice:(ConnectableDevice *)device capabilitiesAdded:(NSArray *)added removed:(NSArray *)removed
When a ConnectableDevice finds & loses DeviceServices, that ConnectableDevice will experience a change in
its collective capabilities list. When such a change occurs, this message will be sent with arrays of capabilities
that were added & removed.

This message will allow you to decide when to stop/start interacting with a ConnectableDevice, based off of its
supported capabilities.

Parameters:
¢ device — ConnectableDevice that has experienced a change in capabilities
» capabilitiesAdded: added — NSArray of capabilities that are new to the ConnectableDevice

* removed: removed — NSArray of capabilities that the ConnectableDevice has lost

5.16. API References 323

connectSDK

- (void) connectableDevice:(ConnectableDevice *)device connectionFailedWithError:(NSError *)error This
method is called when the connection to the ConnectableDevice has failed.

Parameters:
¢ device — ConnectableDevice that has failed to connect
* connectionFailedWithError: error — NSError with a description of the failure

- (void) connectableDeviceConnectionRequired:(ConnectableDevice *)device forService:(DeviceService *)service
DeviceService delegate proxy method.

This method is called when a DeviceService requires an active connection. This will be the case for Device-
Services that send messages over websockets (webOS, etc) and DeviceServices that require pairing to send
messages (Netcast, etc).

Parameters:
¢ device — ConnectableDevice containing the DeviceService
* forService: service — DeviceService which requires a connection

- (void) connectableDeviceConnectionSuccess:(ConnectableDevice *)device forService:(DeviceService *)service
DeviceService delegate proxy method.

This method is called when a DeviceService has successfully connected.
Parameters:

» device — ConnectableDevice containing the DeviceService

« forService: service — DeviceService which has connected

- (void) connectableDevice:(ConnectableDevice *)device service:(DeviceService *)service disconnectedWithError:(NSError *)err
DeviceService delegate proxy method.

This method is called when a DeviceService becomes disconnected.
Parameters:

¢ device — ConnectableDevice containing the DeviceService

¢ service: service — DeviceService which has disconnected

¢ disconnectedWithError: error — NSError with a description of any errors causing the disconnect. If this
value is nil, then the disconnect was clean/expected.

- (void) connectableDevice:(ConnectableDevice *)device service:(DeviceService *)service didFailConnectWithError:(NSError *)e
DeviceService delegate proxy method.

This method is called when a DeviceService fails to connect.
Parameters:
¢ device — ConnectableDevice containing the DeviceService
* service: service — DeviceService which has failed to connect
¢ didFailConnectWithError: error — NSError with a description of the failure

- (void) connectableDevice:(ConnectableDevice *)device service:(DeviceService *)service pairingRequiredOfType:(int)pairing Typ
DeviceService delegate proxy method.

This method is called when a DeviceService tries to connect and finds out that it requires pairing information
from the user.

Parameters:

324 Chapter 5. Promote Your TV App

connectSDK

¢ device — ConnectableDevice containing the DeviceService

* service: service — DeviceService that requires pairing

* pairingRequiredOfType: pairingType — DeviceServicePairingType that the DeviceService requires
» withData: pairingData — Any data that might be required for the pairing process, will usually be nil

- (void) connectableDevicePairingSuccess:(ConnectableDevice *)device service:(DeviceService *)service
DeviceService delegate proxy method.

This method is called when a DeviceService completes the pairing process.
Parameters:

* device — ConnectableDevice containing the DeviceService

« service: service — DeviceService that has successfully completed pairing

- (void) connectableDevice:(ConnectableDevice *)device service:(DeviceService *)service pairingFailedWithError:(NSError *)err
DeviceService delegate proxy method.

This method is called when a DeviceService fails to complete the pairing process.
Parameters:

¢ device — ConnectableDevice containing the DeviceService

* service: service — DeviceService that has failed to complete pairing

¢ pairingFailedWithError: error — NSError with a description of the failure

ServiceCommand

Properties

id<ServiceCommandDelegate> delegate
SuccessBlock callbackComplete
FailureBlock callbackError

NSString * HTTPMethod

id payload

NSURL * target

Methods

- (instancetype) initWithDelegate:(id<ServicecCommandDelegate>)delegate target:(NSURL *)url payload:(id)payload
Parameters:

* delegate

e target: url

* payload: payload
- (void) send

+ (instancetype) commandWithDelegate:(id<ServiceCommandDelegate>)delegate target:(NSURL *)url payload:(id)payload
Parameters:

5.16. API References 325

connectSDK

¢ delegate
e target: url

» payload: payload

ServiceSubscription

extendsServiceCommand

Properties

int callld

NSMutableArray * successCalls
NSMutableArray * failureCalls
BOOL isSubscribed

Methods

- (instancetype) initWithDelegate:(id<ServiceCommandDelegate>)delegate target:(NSURL *)target payload:(id)payload callld:(
Parameters:

* delegate
¢ target: target
* payload: payload
* callld: callld
- (void) addSuccess:(id)success Parameters:
* success — Optional id to be called on success
- (void) addFailure:(FailureBlock)failure Parameters:
* failure — Optional FailureBlock to be called on failure
- (void) subscribe
- (void) unsubscribe

+(instancetype) subscriptionWithDelegate:(id<ServicecCommandDelegate>)delegate target:(NSURL *)url payload:(id)payload c
Parameters:

¢ delegate

e target: url

* payload: payload
e callld: callld

326 Chapter 5. Promote Your TV App

connectSDK

Inherited Methods

- (instancetype) initWithDelegate:(id<ServiceCommandDelegate>)delegate target:(NSURL *)url payload:(id)payload
Parameters:

* delegate

o target: url

* payload: payload
- (void) send

¢ (instancetype) commandWithDelegate:(id<ServiceCommandDelegate>)delegate target:(NSURL *)url payload:(id)payload
Parameters:

— delegate
— target: url

— payload: payload

5.16.3 Device Services

AirPlayService

extendsDeviceService
AirPlayService provides media playback/control & web app launching (iOS only) capabilities for Apple TV devices.

AirPlay-enabled speakers are not currently supported by Connect SDK.

Default functionality

Out of the box, AirPlayService will only support web app launching through AirPlay mirroring. AirPlayService also
provides a Media mode, in which HTTP commands will be sent to the AirPlay device to play and control media files
(image, video, audio). Due to certain limitations of the AirPlay protocol, you may only support web apps OR media
capabilities through Connect SDK. You may still directly access AirPlay APIs through AVPlayer, MPMoviePlayer-
Controller, UIWebView, audio routing, etc.

To set the capability mode for the AirPlayService, see the setAirPlayServiceMode: static method on the
AirPlayService class.

Methods

+ (AirPlayServiceMode) serviceMode Returns the current AirPlayServiceMode

+ (void) setAirPlayServiceMode:(AirPlayServiceMode)serviceMode Sets the AirPlayService mode. This property
should be set before DiscoveryManager is set for the first time.

Parameters:

¢ serviceMode

5.16. API References 327

connectSDK

Inherited Methods

+ (NSDictionary *) discoveryParameters A dictionary of keys/values that will be used by the DiscoveryProvider
used to discover this DeviceService. Some keys that are used are: service name, SSDP filter, etc.

+ (DeviceService *) deviceServiceWithClass:(Class)_class serviceConfig:(ServiceConfig *)serviceConfig
Parameters:

e class
* serviceConfig: serviceConfig

+ (BOOL) shouldDisconnectOnBackground Static property that determines whether a DeviceService subclass
should shut down communication channels when the app enters a background state. This may be helpful for
apps that need to communicate with web apps from the background. This property may not be applicable to all
DeviceService subclasses.

Sets the shouldDisconnectOnBackground static property. This property should be set before starting Discovery-
Manager for the first time.

+ (void) setShouldDisconnectOnBackround:(BOOL)shouldDisconnectOnBackground Parameters:
¢ shouldDisconnectOnBackground
- (instancetype) initWithServiceConfig:(ServiceConfig *)serviceConfig Parameters:
* serviceConfig
- (BOOL) hasCapability:(NSString *)capability Parameters:
e capability
- (BOOL) hasCapabilities:(NSArray *)capabilities Parameters:
* capabilities
- (BOOL) hasAnyCapability:(NSArray *)capabilities Parameters:
e capabilities

- (void) connect Will attempt to connect to the DeviceService. The failure/success will be reported back to the De-
viceServiceDelegate. If the connection attempt reveals that pairing is required, the DeviceServiceDelegate will
also be notified in that event.

- (void) disconnect Will attempt to disconnect from the DeviceService. The failure/success will be reported back to
the DeviceServiceDelegate.

- (void) pairWithData:(id)pairingData Will attempt to pair with the DeviceService with the provided pairingData.
The failure/success will be reported back to the DeviceServiceDelegate.

Parameters:

e pairingData — Data to be used for pairing. The type of this parameter will vary depending on what type of
pairing is required, but is likely to be a string (pin code, pairing key, etc).

- (void) closeLaunchSession:(LaunchSession *)launchSession success:(SuccessBlock)success failure:(FailureBlock)failure
Every LaunchSession object has an associated DeviceService. Internally, LaunchSession’s close method prox-
ies to it’s DeviceService’s closeLaunchSession method. If, for some reason, your LaunchSession loses it’s
DeviceService reference, you can call this closeLaunchSession method directly.

Parameters:
¢ JlaunchSession — LaunchSession to be closed

¢ success: success — (optional) SuccessBlock to be called on success

328 Chapter 5. Promote Your TV App

connectSDK

* failure: failure — (optional) FailureBlock to be called on failure

AirPlayServiceHTTPKeepAlive

The class is responsible for maintaining an AirPlay connection alive by sending periodic requests.

Properties

CGFloat interval The interval between keep-alive requests, in seconds. 50 by default.
id<ServiceCommandDelegate> commandDelegate An object that sends AirPlay commands.

NSURL * commandURL The base URL for commands.

Methods

- (instancetype) initWithInterval:(CGFloat)interval andCommandDelegate:(id<ServicecCommandDelegate>)commandDelegate
Designated initializer, setting the interval and command delegate.

Parameters:
* interval
¢ andCommandDelegate: commandDelegate

- (instancetype) initWithCommandDelegate:(id<ServiceCommandDelegate>)commandDelegate Initializer that
sets the command delegate.

Parameters:
* commandDelegate
- (void) startTimer Schedules sending keep-alive requests. The first one will be sent after the specified interval.

- (void) stopTimer Stops sending keep-alive requests.

AirPlayServiceMode

The values in this enum type define what capabilities should be supported by the AirPlayService.

Properties

AirPlayServiceModeWebApp Enables support for web apps via Apple’s External Display APIs
AirPlayServiceModeMedia Enables support for media (image, video, audio) by way of HTTP commands

CastService

extends DeviceService

CastService provides capabilities for Google Chromecast devices. CastService acts as a layer on top of Google’s own
Cast SDK, and requires the Cast SDK library to function. CastService provides the following functionality:

* Media playback

¢ Media control

5.16. API References 329

https://developer.apple.com/library/archive/documentation/WindowsViews/Conceptual/WindowAndScreenGuide/UsingExternalDisplay/UsingExternalDisplay.html
http://nto.github.io/AirPlay

connectSDK

* Web app launching & two-way communication
* Volume control

Using Connect SDK for discovery/control of Chromecast devices will result in your app complying with the Google
Cast SDK terms of service.

To learn more about Cast SDK, visit the Google Cast SDK Developer site.

Properties

GCKDeviceManager * castDeviceManager The GCKDeviceManager that CastService is using internally to man-
age devices.

GCKDevice * castDevice The GCKDevice object that CastService is using internally for device information.

CastServiceChannel * castServiceChannel The CastServiceChannel is used for app-to-app communication that is
handling by the Connect SDK JavaScript Bridge.

GCKMediaControlChannel * castMediaControlChannel The GCKMediaControlChannel that the CastService is
using to send media events to the connected web app.

NSString * castWebAppld The CastService will launch the specified web app id.

Inherited Methods

+ (NSDictionary *) discoveryParameters A dictionary of keys/values that will be used by the DiscoveryProvider
used to discover this DeviceService. Some keys that are used are: service name, SSDP filter, etc.

+ (DeviceService *) deviceServiceWithClass:(Class)_class serviceConfig:(ServiceConfig *)serviceConfig
Parameters:

e class
* serviceConfig: serviceConfig

+ (BOOL) shouldDisconnectOnBackground Static property that determines whether a DeviceService subclass
should shut down communication channels when the app enters a background state. This may be helpful for
apps that need to communicate with web apps from the background. This property may not be applicable to all
DeviceService subclasses.

Sets the shouldDisconnectOnBackground static property. This property should be set before starting Discovery-
Manager for the first time.

+ (void) setShouldDisconnectOnBackround:(BOOL)shouldDisconnectOnBackground Parameters:
¢ shouldDisconnectOnBackground
- (instancetype) initWithServiceConfig:(ServiceConfig *)serviceConfig Parameters:
* serviceConfig
- (BOOL) hasCapability:(NSString *)capability Parameters:
e capability
- (BOOL) hasCapabilities:(NSArray *)capabilities Parameters:
* capabilities
- (BOOL) hasAnyCapability:(NSArray *)capabilities Parameters:

e capabilities

330 Chapter 5. Promote Your TV App

https://developers.google.com/cast/docs/terms
https://developers.google.com/cast/

connectSDK

- (void) connect Will attempt to connect to the DeviceService. The failure/success will be reported back to the De-
viceServiceDelegate. If the connection attempt reveals that pairing is required, the DeviceServiceDelegate will
also be notified in that event.

- (void) disconnect Will attempt to disconnect from the DeviceService. The failure/success will be reported back to
the DeviceServiceDelegate.

- (void) pairWithData:(id)pairingData Will attempt to pair with the DeviceService with the provided pairingData.
The failure/success will be reported back to the DeviceServiceDelegate.

Parameters:
e pairingData —

Data to be used for pairing. The type of this parameter will vary depending on what type of
pairing is required, but is likely to be a string (pin code, pairing key, etc).

- (void) closeLaunchSession:(LaunchSession *)launchSession success:(SuccessBlock)success failure:(FailureBlock)failure
Every LaunchSession object has an associated DeviceService. Internally, LaunchSession’s close method prox-
ies to it’s DeviceService’s closeLaunchSession method. If, for some reason, your LaunchSession loses it’s
DeviceService reference, you can call this closeLaunchSession method directly.

Parameters:
¢ launchSession — LaunchSession to be closed
* success: success — (optional) SuccessBlock to be called on success

e failure: failure — (optional) FailureBlock to be called on failure

DIALService

extends DeviceService

DIALService is a full implementation of the DIscover And Launch (DIAL) protocol specification. DIALService is
used to launch & close apps on DIAL-enabled devices. It can also be used to probe for an app’s existence on a
DIAL-enabled device. DIAL commands occur over HTTP.

See the DIAL protocol specification for more information.

Methods

+ (void) registerApp:(NSString *)appld Registers an app ID to be checked upon discovery of this device. If the app
is found on the target device, the DIALService will gain the “Launcher.” capability, where is the value of the
appld parameter.

This method must be called before starting DiscoveryManager for the first time.
Parameters:

 appld — ID of the app to be checked for

Inherited Methods

+ (NSDictionary *) discoveryParameters A dictionary of keys/values that will be used by the DiscoveryProvider
used to discover this DeviceService. Some keys that are used are: service name, SSDP filter, etc.

+ (DeviceService *) deviceServiceWithClass:(Class)_class serviceConfig:(ServiceConfig *)serviceConfig
Parameters:

5.16. API References 331

http://www.dial-multiscreen.org/dial-protocol-specification

connectSDK

e _class
* serviceConfig: serviceConfig

+ (BOOL) shouldDisconnectOnBackground Static property that determines whether a DeviceService subclass
should shut down communication channels when the app enters a background state. This may be helpful for
apps that need to communicate with web apps from the background. This property may not be applicable to all
DeviceService subclasses.

Sets the shouldDisconnectOnBackground static property. This property should be set before starting Discovery-
Manager for the first time.

+ (void) setShouldDisconnectOnBackround:(BOOL)shouldDisconnectOnBackground Parameters:
¢ shouldDisconnectOnBackground
- (instancetype) initWithServiceConfig:(ServiceConfig *)serviceConfig Parameters:
* serviceConfig
- (BOOL) hasCapability:(NSString *)capability Parameters:
e capability
- (BOOL) hasCapabilities:(NSArray *)capabilities Parameters:
e capabilities
- (BOOL) hasAnyCapability:(NSArray *)capabilities Parameters:
e capabilities

- (void) connect Will attempt to connect to the DeviceService. The failure/success will be reported back to the De-
viceServiceDelegate. If the connection attempt reveals that pairing is required, the DeviceServiceDelegate will
also be notified in that event.

- (void) disconnect Will attempt to disconnect from the DeviceService. The failure/success will be reported back to
the DeviceServiceDelegate.

- (void) pairWithData:(id)pairingData Will attempt to pair with the DeviceService with the provided pairingData.
The failure/success will be reported back to the DeviceServiceDelegate.

Parameters:

e pairingData — Data to be used for pairing. The type of this parameter will vary depending on what type of
pairing is required, but is likely to be a string (pin code, pairing key, etc).

- (void) closeLaunchSession:(LaunchSession *)launchSession success:(SuccessBlock)success failure:(FailureBlock)failure
Every LaunchSession object has an associated DeviceService. Internally, LaunchSession’s close method prox-
ies to it’s DeviceService’s closeLaunchSession method. If, for some reason, your LaunchSession loses it’s
DeviceService reference, you can call this closeLaunchSession method directly.

Parameters:
¢ launchSession — LaunchSession to be closed
* success: success — (optional) SuccessBlock to be called on success

* failure: failure — (optional) FailureBlock to be called on failure

DLNAService

extends DeviceService

332 Chapter 5. Promote Your TV App

connectSDK

DLNAService is a rough control implementation for the UPnP AVTransport, MediaRenderer, and RenderingControl
services. DLNA commands & events occur over HTTP.

This service currently exists for the sole purpose of providing media control/playback functionality for the Net-
castTVService. DiscoveryManager is currently set up to ignore any DLNA devices that are not manufactured by
LG. It is not recommended to remove this restriction, as the DLNAService implementation is not complete.

To learn more about the protocols in use by DLNAService, check out the following documents.
e UPnP
e AVTransport Service
* MediaRenderer Device

* RenderingControl Service

Inherited Methods

+ (NSDictionary *) discoveryParameters A dictionary of keys/values that will be used by the DiscoveryProvider
used to discover this DeviceService. Some keys that are used are: service name, SSDP filter, etc.

+ (DeviceService *) deviceServiceWithClass:(Class)_class serviceConfig:(ServiceConfig *)serviceConfig
Parameters:

e _class
« serviceConfig: serviceConfig

+ (BOOL) shouldDisconnectOnBackground Static property that determines whether a DeviceService subclass
should shut down communication channels when the app enters a background state. This may be helpful for
apps that need to communicate with web apps from the background. This property may not be applicable to all
DeviceService subclasses.

Sets the shouldDisconnectOnBackground static property. This property should be set before starting Discovery-
Manager for the first time.

+ (void) setShouldDisconnectOnBackround:(BOOL)shouldDisconnectOnBackground Parameters:
* shouldDisconnectOnBackground
- (instancetype) initWithServiceConfig:(ServiceConfig *)serviceConfig Parameters:
* serviceConfig
- (BOOL) hasCapability:(NSString *)capability Parameters:
e capability
- (BOOL) hasCapabilities:(NSArray *)capabilities Parameters:
e capabilities
- (BOOL) hasAnyCapability:(NSArray *)capabilities Parameters:
* capabilities

- (void) connect Will attempt to connect to the DeviceService. The failure/success will be reported back to the De-
viceServiceDelegate. If the connection attempt reveals that pairing is required, the DeviceServiceDelegate will
also be notified in that event.

- (void) disconnect Will attempt to disconnect from the DeviceService. The failure/success will be reported back to
the DeviceServiceDelegate.

5.16. API References 333

http://upnp.org/
http://upnp.org/specs/av/UPnP-av-AVTransport-v1-Service.pdf
http://upnp.org/specs/av/UPnP-av-MediaRenderer-v1-Device.pdf
http://upnp.org/specs/av/UPnP-av-RenderingControl-v1-Service.pdf

connectSDK

- (void) pairWithData:(id)pairingData Will attempt to pair with the DeviceService with the provided pairingData.
The failure/success will be reported back to the DeviceServiceDelegate.

Parameters:

e pairingData — Data to be used for pairing. The type of this parameter will vary depending on what type of
pairing is required, but is likely to be a string (pin code, pairing key, etc).

- (void) closeLaunchSession:(LaunchSession *)launchSession success:(SuccessBlock)success failure:(FailureBlock)failure
Every LaunchSession object has an associated DeviceService. Internally, LaunchSession’s close method prox-
ies to it’s DeviceService’s closeLaunchSession method. If, for some reason, your LaunchSession loses it’s
DeviceService reference, you can call this closeLaunchSession method directly.

Parameters:
¢ launchSession — LaunchSession to be closed
* success: success — (optional) SuccessBlock to be called on success

* failure: failure — (optional) FailureBlock to be called on failure
DeviceService
Overview

From a high-level perspective, DeviceService completely abstracts the functionality of a particular service/protocol
(webOS TV, Netcast TV, Chromecast, Roku, DIAL, etc).

In Depth

DeviceService is an abstract class that is meant to be extended. You shouldn’t ever use DeviceService directly, unless
extending it to provide support for an additional service/protocol.

Immediately after discovery of a DeviceService, DiscoveryManager will set the DeviceService’s delegate to the Con-
nectableDevice that owns the DeviceService. You should not change the delegate unless you intend to manage the
lifecycle of that service. The DeviceService will proxy all of its delegate method calls through the ConnectableDe-
vice’s ConnectableDeviceDelegate.

Connection & Pairing

Your ConnectableDevice object will let you know if you need to connect or pair to any services.

Capabilities

All DeviceService objects have a group of capabilities. These capabilities can be implemented by any object, and that
object will be returned when you call the DeviceService’s capability methods (launcher, mediaPlayer, volumeControl,
etc).

Properties

id<DeviceServiceDelegate> delegate Delegate object to receive DeviceService status messages. See note in the “In
Depth” section about changing the DeviceServiceDelegate.

334 Chapter 5. Promote Your TV App

connectSDK

ServiceDescription * serviceDescription Object containing the discovered information about this DeviceService

ServiceConfig * serviceConfig Object containing persistence data about this DeviceService (pairing info, SSL cer-
tificates, etc)

NSString * serviceName Name of the DeviceService (webOS, Chromecast, etc)

NSArray * capabilities An array of capabilities supported by the DeviceService. This array may change based off a
number of factors.

* DiscoveryManager’s pairingLevel value

¢ Connect SDK framework version

* First screen device OS version

* First screen device configuration (apps installed, settings, etc)

* Physical region
BOOL connected Whether the DeviceService is currently connected
BOOL isConnectable Whether the DeviceService requires an active connection or registration process
BOOL requiresPairing Whether the DeviceService requires pairing or not.

DeviceServicePairingType pairingType Type of pairing that this DeviceService requires. May be unknown until you
try to connect.

id pairingData May contain useful information regarding pairing (pairing key length, etc)

Methods

+ (NSDictionary *) discoveryParameters A dictionary of keys/values that will be used by the DiscoveryProvider
used to discover this DeviceService. Some keys that are used are: service name, SSDP filter, etc.

+ (DeviceService *) deviceServiceWithClass:(Class)_class serviceConfig:(ServiceConfig *)serviceConfig
Parameters:

e _class
« serviceConfig: serviceConfig

+ (BOOL) shouldDisconnectOnBackground Static property that determines whether a DeviceService subclass
should shut down communication channels when the app enters a background state. This may be helpful for
apps that need to communicate with web apps from the background. This property may not be applicable to all
DeviceService subclasses.

Sets the shouldDisconnectOnBackground static property. This property should be set before starting Discovery-
Manager for the first time.

+ (void) setShouldDisconnectOnBackround:(BOOL)shouldDisconnectOnBackground Parameters:
¢ shouldDisconnectOnBackground

- (instancetype) initWithServiceConfig:(ServiceConfig *)serviceConfig Parameters:
* serviceConfig

- (BOOL) hasCapability:(NSString *)capability Parameters:
e capability

- (BOOL) hasCapabilities:(NSArray *)capabilities Parameters:

e capabilities

5.16. API References 335

connectSDK

- (BOOL) hasAnyCapability:(NSArray *)capabilities Parameters:
e capabilities

- (void) connect Will attempt to connect to the DeviceService. The failure/success will be reported back to the De-
viceServiceDelegate. If the connection attempt reveals that pairing is required, the DeviceServiceDelegate will
also be notified in that event.

- (void) disconnect Will attempt to disconnect from the DeviceService. The failure/success will be reported back to
the DeviceServiceDelegate.

- (void) pairWithData:(id)pairingData Will attempt to pair with the DeviceService with the provided pairingData.
The failure/success will be reported back to the DeviceServiceDelegate.

Parameters:
e pairingData —

Data to be used for pairing. The type of this parameter will vary depending on what type of
pairing is required, but is likely to be a string (pin code, pairing key, etc).

- (void) closeLaunchSession:(LaunchSession *)launchSession success:(SuccessBlock)success failure:(FailureBlock)failure
Every LaunchSession object has an associated DeviceService. Internally, LaunchSession’s close method prox-
ies to it’s DeviceService’s closeLaunchSession method. If, for some reason, your LaunchSession loses it’s
DeviceService reference, you can call this closeLaunchSession method directly.

Parameters:
¢ launchSession — LaunchSession to be closed
* success: success — (optional) SuccessBlock to be called on success

* failure: failure — (optional) FailureBlock to be called on failure

DeviceServiceDelegate

DeviceServiceDelegate allows your app to respond to each step of the connection and pairing processes, if needed. By
default, a DeviceService’s ConnectableDevice is set as the delegate. Changing a DeviceService’s delegate will break
the normal operation of Connect SDK and is discouraged. ConnectableDeviceDelegate provides proxy methods for
all of the methods listed here.

Methods

- (void) deviceServiceConnectionRequired:(DeviceService *)service If the DeviceService requires an active con-
nection (websocket, pairing, etc) this method will be called.

Parameters:
* service — DeviceService that requires connection

- (void) deviceServiceConnectionSuccess:(DeviceService *)service After the connection has been successfully es-
tablished, and after pairing (if applicable), this method will be called.

Parameters:
* service — DeviceService that was successfully connected

- (void) deviceService:(DeviceService *)service capabilitiesAdded:(NSArray *)added removed:(NSArray *)removed
There are situations in which a DeviceService will update the capabilities it supports and propagate these
changes to the DeviceService. Such situations include:

* on discovery, DIALService will reach out to detect if certain apps are installed

336 Chapter 5. Promote Your TV App

connectSDK

* on discovery, certain DeviceServices need to reach out for & region information

For more information on this particular method, see ConnectableDeviceDelegate’s connectableDe-
vice:capabilitiesAdded:removed: method.

Parameters:
* service — DeviceService that has experienced a change in capabilities
* capabilitiesAdded: added — NSArray of capabilities that are new to the DeviceService
* removed: removed — NSArray of capabilities that the DeviceService has lost

- (void) deviceService:(DeviceService *)service disconnectedWithError:(NSError *)error This method will be
called on any disconnection. If error is nil, then the connection was clean and likely triggered by the responsible
DiscoveryProvider or by the user.

Parameters:
¢ service — DeviceService that disconnected

¢ disconnectedWithError: error — NSError with a description of any errors causing the disconnect. If this
value is nil, then the disconnect was clean/expected.

- (void) deviceService:(DeviceService *)service didFailConnectWithError:(NSError *)error Will be called if the
DeviceService fails to establish a connection.

Parameters:
¢ service — DeviceService which has failed to connect
* didFailConnectWithError: error — NSError with a description of the failure

- (void) deviceService:(DeviceService *)service pairingRequiredOfType:(DeviceServicePairingType)pairing Type withData:(id)pai;
If the DeviceService requires pairing, valuable data will be passed to the delegate via this method.

Parameters:
* service — DeviceService that requires pairing
* pairingRequiredOfType: pairingType — DeviceServicePairingType that the DeviceService requires
» withData: pairingData — Any object/data that might be required for the pairing process, will usually be nil
- (void) deviceServicePairingSuccess:(DeviceService *)service Parameters:
* service

- (void) deviceService:(DeviceService *)service pairingFailedWithError:(NSError *)error If there is any error in
pairing, this method will be called.

Parameters:
* service — DeviceService that has failed to complete pairing

* pairingFailedWithError: error — NSError with a description of the failure

DeviceServicePairingLevel

Enumerated value for determining how a DeviceService should handle pairing when attempting to connect.

5.16. API References 337

connectSDK

Properties

DeviceServicePairingLevelOff DeviceServices will never try to pair with a device

DeviceServicePairingLevelOn DeviceServices will try to pair with a device, if needed

DeviceServicePairingType

Type of pairing that is required by a particular DeviceService. This type will be passed along with the DeviceSer-
viceDelegate deviceService:pairingRequiredOfType:withData: message.

Properties

DeviceServicePairingTypeNone DeviceService does not require pairing
DeviceServicePairingTypeFirstScreen DeviceService requires user interaction on the first screen (ex. pairing alert)

DeviceServicePairingTypePinCode First screen is displaying a pairing pin code that can be sent through the Device-
Service

DeviceServicePairingTypeMixed DeviceService can pair with multiple pairing types (ex. first screen OR pin)
DeviceServicePairingTypeAirPlayMirroring DeviceService requires AirPlay mirroring to be enabled to connect

DeviceServicePairingTypeUnknown DeviceService pairing type is unknown

FireTVService

extends DeviceService

FireTVService provides capabilities for Amazon Fire TV and Fire TV Stick devices. FireTVService acts a
layer on top of Amazon’s Fling SDK, and requires the Fling SDK framework to function. FireTVService provides
the following functionality:

* Media playback
¢ Media control

Using Connect SDK for discovery/control of Fire TV devices will result in your app complying with the Amazon
Fling SDK terms of service.

Properties

id<BlockRunner> delegateBlockRunner The BlockRunner instance specifying where to run delegate callbacks.
The default value is the main dispatch queue runner. Cannot be nil, as it will reset to the default value.

FireTVMediaPlayer * fireTVMediaPlayer Object that controls MediaPlayer functionality.
FireTVMediaControl * fireTVMediaControl Object that controls MediaControl functionality.

id<RemoteMediaPlayer> remoteMediaPlayer A RemoteMediaPlayer that’s controlled by this service in-
stance. It’s returned from the ServiceDescription object, and thus can be nil if the
serviceDescription property isnil.

AppStateChangeNotifier * appStateChangeNotifier An AppStateChangeNotifier that allows to track app
state changes.

338 Chapter 5. Promote Your TV App

connectSDK

Methods

- (instancetype) initWithAppStateChangeNotifier:(nullable AppStateChangeNotifier *)stateNotifier Initializes
the instance with the given AppStateChangeNotifier. Using nil parameter will create real object.

Parameters:

o stateNotifier

Inherited Methods

+ (NSDictionary *) discoveryParameters A dictionary of keys/values that will be used by the DiscoveryProvider
used to discover this DeviceService. Some keys that are used are: service name, SSDP filter, etc.

+ (DeviceService *) deviceServiceWithClass:(Class)_class serviceConfig:(ServiceConfig *)serviceConfig
Parameters:

e _class
« serviceConfig: serviceConfig

+ (BOOL) shouldDisconnectOnBackground Static property that determines whether a DeviceService subclass
should shut down communication channels when the app enters a background state. This may be helpful for
apps that need to communicate with web apps from the background. This property may not be applicable to all
DeviceService subclasses.

Sets the shouldDisconnectOnBackground static property. This property should be set before starting Discovery-
Manager for the first time.

+ (void) setShouldDisconnectOnBackround:(BOOL)shouldDisconnectOnBackground Parameters:
¢ shouldDisconnectOnBackground
- (instancetype) initWithServiceConfig:(ServiceConfig *)serviceConfig Parameters:
* serviceConfig
- (BOOL) hasCapability:(NSString *)capability Parameters:
e capability
- (BOOL) hasCapabilities:(NSArray *)capabilities Parameters:
e capabilities
- (BOOL) hasAnyCapability:(NSArray *)capabilities Parameters:
e capabilities

- (void) connect Will attempt to connect to the DeviceService. The failure/success will be reported back to the De-
viceServiceDelegate. If the connection attempt reveals that pairing is required, the DeviceServiceDelegate will
also be notified in that event.

- (void) disconnect Will attempt to disconnect from the DeviceService. The failure/success will be reported back to
the DeviceServiceDelegate.

- (void) pairWithData:(id)pairingData Will attempt to pair with the DeviceService with the provided pairingData.
The failure/success will be reported back to the DeviceServiceDelegate.

Parameters:

e pairingData — Data to be used for pairing. The type of this parameter will vary depending on what type of
pairing is required, but is likely to be a string (pin code, pairing key, etc).

5.16. API References 339

connectSDK

- (void) closeLaunchSession:(LaunchSession *)launchSession success:(SuccessBlock)success failure:(FailureBlock)failure

Every LaunchSession object has an associated DeviceService. Internally, LaunchSession’s close method prox-
ies to it’s DeviceService’s closeLaunchSession method. If, for some reason, your LaunchSession loses it’s
DeviceService reference, you can call this closeLaunchSession method directly.

Parameters:
¢ launchSession — LaunchSession to be closed
* success: success — (optional) SuccessBlock to be called on success

* failure: failure — (optional) FailureBlock to be called on failure

NetcastTVService

extendsDeviceService

NetcastTVService provides capabilities for LG Smart TVs running Netcast versions 3.x and 4.x (model years 2012-
2014). The media playback functionality of NetcastTVService may be proxied through to DLNAService to avoid
requiring pairing. Commands & subscriptions on Netcast occur over HTTP.

The following capabilities are provided by the Netcast OS:
* Media playback
* Media control
* App launching*
* Volume control*
 Text input control*
* Key control (fiveway)*
* Mouse control*
* Power control*
e TV control (change channels, get channel info)*
» External input control*
* =requires pairing

To learn more about Netcast’s second screen protocol, visit the UDAP protocol specification.

Inherited Methods

+ (NSDictionary *) discoveryParameters A dictionary of keys/values that will be used by the DiscoveryProvider
used to discover this DeviceService. Some keys that are used are: service name, SSDP filter, etc.

+ (DeviceService *) deviceServiceWithClass:(Class)_class serviceConfig:(ServiceConfig *)serviceConfig
Parameters:

e class
* serviceConfig: serviceConfig

+ (BOOL) shouldDisconnectOnBackground Static property that determines whether a DeviceService subclass
should shut down communication channels when the app enters a background state. This may be helpful for
apps that need to communicate with web apps from the background. This property may not be applicable to all
DeviceService subclasses.

340 Chapter 5. Promote Your TV App

http://webostv.developer.lge.com/discover/netcast/document/

connectSDK

Sets the shouldDisconnectOnBackground static property. This property should be set before starting Discovery-
Manager for the first time.

+ (void) setShouldDisconnectOnBackround:(BOOL)shouldDisconnectOnBackground Parameters:
¢ shouldDisconnectOnBackground
- (instancetype) initWithServiceConfig:(ServiceConfig *)serviceConfig Parameters:
* serviceConfig
- (BOOL) hasCapability:(NSString *)capability Parameters:
e capability
- (BOOL) hasCapabilities:(NSArray *)capabilities Parameters:
e capabilities
- (BOOL) hasAnyCapability:(NSArray *)capabilities Parameters:
e capabilities

- (void) connect Will attempt to connect to the DeviceService. The failure/success will be reported back to the De-
viceServiceDelegate. If the connection attempt reveals that pairing is required, the DeviceServiceDelegate will
also be notified in that event.

- (void) disconnect Will attempt to disconnect from the DeviceService. The failure/success will be reported back to
the DeviceServiceDelegate.

- (void) pairWithData:(id)pairingData Will attempt to pair with the DeviceService with the provided pairingData.
The failure/success will be reported back to the DeviceServiceDelegate.

Parameters:

e pairingData — Data to be used for pairing. The type of this parameter will vary depending on what type of
pairing is required, but is likely to be a string (pin code, pairing key, etc).

- (void) closeLaunchSession:(LaunchSession *)launchSession success:(SuccessBlock)success failure:(FailureBlock)failure
Every LaunchSession object has an associated DeviceService. Internally, LaunchSession’s close method prox-
ies to it’s DeviceService’s closeLaunchSession method. If, for some reason, your LaunchSession loses it’s
DeviceService reference, you can call this closeLaunchSession method directly.

Parameters:
¢ launchSession — LaunchSession to be closed
* success: success — (optional) SuccessBlock to be called on success

e failure: failure — (optional) FailureBlock to be called on failure

RokuService

extendsDeviceService
RokuService provides many capabilities for Roku devices. Communication with Roku devices occurs over HTTP.
* List, launch, & close apps
¢ Media playback
* Media control
 Text input control

* Key control (fiveway)

5.16. API References 341

connectSDK

These APIs should work on all Roku devices — they have been tested on Roku 2, Roku 3, and Roku Streaming Stick
all runnning Roku 5.3 or later.

To learn more about the Roku External Control APIs, visit the Roku External Control Guide.

Methods

+ (void) register App:(NSString *)appld Parameters:
e appld

Inherited Methods

+ (NSDictionary *) discoveryParameters A dictionary of keys/values that will be used by the DiscoveryProvider
used to discover this DeviceService. Some keys that are used are: service name, SSDP filter, etc.

+ (DeviceService *) deviceServiceWithClass:(Class)_class serviceConfig:(ServiceConfig *)serviceConfig
Parameters:

e class
* serviceConfig: serviceConfig

+ (BOOL) shouldDisconnectOnBackground Static property that determines whether a DeviceService subclass
should shut down communication channels when the app enters a background state. This may be helpful for
apps that need to communicate with web apps from the background. This property may not be applicable to all
DeviceService subclasses.

Sets the shouldDisconnectOnBackground static property. This property should be set before starting Discovery-
Manager for the first time.

+ (void) setShouldDisconnectOnBackround:(BOOL)shouldDisconnectOnBackground Parameters:
¢ shouldDisconnectOnBackground
- (instancetype) initWithServiceConfig:(ServiceConfig *)serviceConfig Parameters:
* serviceConfig
- (BOOL) hasCapability:(NSString *)capability Parameters:
e capability
- (BOOL) hasCapabilities:(NSArray *)capabilities Parameters:
* capabilities
- (BOOL) hasAnyCapability:(NSArray *)capabilities Parameters:
e capabilities

- (void) connect Will attempt to connect to the DeviceService. The failure/success will be reported back to the De-
viceServiceDelegate. If the connection attempt reveals that pairing is required, the DeviceServiceDelegate will
also be notified in that event.

- (void) disconnect Will attempt to disconnect from the DeviceService. The failure/success will be reported back to
the DeviceServiceDelegate.

- (void) pairWithData:(id)pairingData Will attempt to pair with the DeviceService with the provided pairingData.
The failure/success will be reported back to the DeviceServiceDelegate.

Parameters:

342 Chapter 5. Promote Your TV App

http://sdkdocs.roku.com/display/sdkdoc/External+Control+Guide

connectSDK

e pairingData — Data to be used for pairing. The type of this parameter will vary depending on what type of
pairing is required, but is likely to be a string (pin code, pairing key, etc).

- (void) closeLaunchSession:(LaunchSession *)launchSession success:(SuccessBlock)success failure:(FailureBlock)failure
Every LaunchSession object has an associated DeviceService. Internally, LaunchSession’s close method prox-
ies to it’s DeviceService’s closeLaunchSession method. If, for some reason, your LaunchSession loses it’s
DeviceService reference, you can call this closeLaunchSession method directly.

Parameters:
¢ launchSession — LaunchSession to be closed
* success: success — (optional) SuccessBlock to be called on success

* failure: failure — (optional) FailureBlock to be called on failure

WebOSTVService

extendsDeviceService

WebOSTVService provides capabilities for LG Smart TVs running webOS (model year 2014). The second screen
gateway running on the webOS provides different capabilities based on whether pairing is enabled or not.

* Web app launching & two-way communication
* App launching
* Media playback
* Media control
* Volume control
 Text input control*
* Key control (fiveway)*
* Mouse control*
* Power control*
* TV control (change channels, get channel info)*
» External input control*
* Toast control*
* = requires pairing

Commands & subscriptions on webOS occur over a WebSocket connection.

webOS Version History

The following version numbers represent the version of webOS released for LG Smart TVs. The version numbers are
associated with any changes to the platform’s second screen APIs in that particular version.

4.0.0

* Initial release
4.0.1

* No changes

4.0.2

5.16. API References 343

connectSDK

* Added app-to-app support
* Added the ability to request pin or prompt pairing
4.0.3

* Fixed a subscription bug in app-to-app

Inherited Methods

+ (NSDictionary *) discoveryParameters A dictionary of keys/values that will be used by the DiscoveryProvider
used to discover this DeviceService. Some keys that are used are: service name, SSDP filter, etc.

+ (DeviceService *) deviceServiceWithClass:(Class)_class serviceConfig:(ServiceConfig *)serviceConfig
Parameters:

e class
* serviceConfig: serviceConfig

+ (BOOL) shouldDisconnectOnBackground Static property that determines whether a DeviceService subclass
should shut down communication channels when the app enters a background state. This may be helpful for
apps that need to communicate with web apps from the background. This property may not be applicable to all
DeviceService subclasses.

Sets the shouldDisconnectOnBackground static property. This property should be set before starting Discovery-
Manager for the first time.

+ (void) setShouldDisconnectOnBackround:(BOOL)shouldDisconnectOnBackground Parameters:
¢ shouldDisconnectOnBackground
- (instancetype) initWithServiceConfig:(ServiceConfig *)serviceConfig Parameters:
* serviceConfig
- (BOOL) hasCapability:(NSString *)capability Parameters:
e capability
- (BOOL) hasCapabilities:(NSArray *)capabilities Parameters:
* capabilities
- (BOOL) hasAnyCapability:(NSArray *)capabilities Parameters:
e capabilities

- (void) connect Will attempt to connect to the DeviceService. The failure/success will be reported back to the De-
viceServiceDelegate. If the connection attempt reveals that pairing is required, the DeviceServiceDelegate will
also be notified in that event.

- (void) disconnect Will attempt to disconnect from the DeviceService. The failure/success will be reported back to
the DeviceServiceDelegate.

- (void) pairWithData:(id)pairingData Will attempt to pair with the DeviceService with the provided pairingData.
The failure/success will be reported back to the DeviceServiceDelegate.

Parameters:

e pairingData — Data to be used for pairing. The type of this parameter will vary depending on what type of
pairing is required, but is likely to be a string (pin code, pairing key, etc).

344 Chapter 5. Promote Your TV App

connectSDK

- (void) closeLaunchSession:(LaunchSession *)launchSession success:(SuccessBlock)success failure:(FailureBlock)failure
Every LaunchSession object has an associated DeviceService. Internally, LaunchSession’s close method prox-
ies to it’s DeviceService’s closeLaunchSession method. If, for some reason, your LaunchSession loses it’s
DeviceService reference, you can call this closeLaunchSession method directly.

Parameters:
¢ launchSession — LaunchSession to be closed
* success: success — (optional) SuccessBlock to be called on success

* failure: failure — (optional) FailureBlock to be called on failure

5.16.4 Capabilities
CapabilityPriorityLevel

CapabilityPriorityLevel values are used by ConnectableDevice to find the most suitable DeviceService capability to
be presented to the user. Values of VeryLow and VeryHigh are not in use internally the SDK. Connect SDK uses Low,
Normal, and High internally.

Default behavior: If you are unsatisfied with the default priority levels & behavior of Connect SDK, it is possible
to subclass a particular DeviceService and provide your own value for each capability. That DeviceService subclass
would need to be registered with DiscoveryManager.

Properties

CapabilityPriorityLevel VeryLow
CapabilityPriorityLevelLow
CapabilityPriorityLevelNormal
CapabilityPriorityLevelHigh
CapabilityPriorityLevel VeryHigh

ExternallnputControl

The ExternallnputControl capability serves to define the methods required for normalizing all functions regarding
external input switching and general info.

Methods

- (id<ExternallnputControl>) externallnputControl
- (CapabilityPriorityLevel) externallnputControlPriority

- (void) launchInputPicker WithSuccess:(AppLaunchSuccessBlock)success failure:(FailureBlock)failure
Launches the visual input picker on the device. This may be helpful for situations where the device does not
support directly listing/modifying the external inputs.

Related capabilities:
* ExternalInputControl.Picker.Launch

Parameters:

5.16. API References 345

connectSDK

* success — Optional AppLaunchSuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) closeInputPicker:(LaunchSession *)launchSession success:(SuccessBlock)success failure:(FailureBlock)failure
Closes the input picker on the device, if it is currently open.

Related capabilities:
* ExternalInputControl.Picker.Close
Parameters:
¢ launchSession — LaunchSession from the ExternallnputListSuccessBlock
* success: success — Optional SuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) getExternallnputListWithSuccess:(ExternallnputListSuccessBlock)success failure:(FailureBlock)failure
Get a list of input devices (HDMI, AV, etc) connected to the device

Related capabilities:
¢ ExternalInputControl.List

Parameters:
* success — Optional ExternallnputListSuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) setExternallnput:(Externallnputlnfo *)externallnputInfo success:(SuccessBlock)success failure:(FailureBlock)failure
Switch to the specified external input

Related capabilities:
¢ ExternalInputControl.Set
Parameters:

« externallnputInfo — Object containing the proper info to set current input. For best cross-platform support,
it is suggested to get ExternallnputInfo references from getExternallnputList, if possible.

* success: success — Optional SuccessBlock to be called on success

« failure: failure — Optional FailureBlock to be called on failure

Typedefs
ExternallnputListSuccessBlock

void(")(NSArray *externallnputList)
Success block that is called upon successfully getting the external input list.
e externallnputList

Array containing an ExternallnputInfo object for each available external input on the device

KeyControl

The KeyControl capability serves to define the methods required for normalizing common key commands (up, down,
left right, ok, back, home, key code).

346 Chapter 5. Promote Your TV App

connectSDK

Methods

- (id<KeyControl>) keyControl
- (CapabilityPriorityLevel) keyControlPriority

- (void) upWithSuccess:(SuccessBlock)success failure:(FailureBlock)failure Sends the up button key code to the
TV.

Related capabilities:
* KeyControl.Up
Parameters:
name parameters
class method-detail-label
* success — Optional SuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) downWithSuccess:(SuccessBlock)success failure:(FailureBlock)failure Sends the down button key code
to the TV.

Related capabilities:
* KeyControl.Down
Parameters:
* success — Optional SuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) leftWithSuccess:(SuccessBlock)success failure:(FailureBlock)failure Sends the left button key code to the
TV.

Related capabilities:
¢ KeyControl.Left
Parameters:
* success — Optional SuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) rightWithSuccess:(SuccessBlock)success failure:(FailureBlock)failure Sends the right button key code to
the TV.

Related capabilities:
¢ KeyControl.Right
Parameters:
* success — Optional SuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) okWithSuccess:(SuccessBlock)success failure:(FailureBlock)failure Sends the OK button key code to the
TV.

Related capabilities:

¢ KeyControl.OK

5.16. API References 347

connectSDK

Parameters:
* success — Optional SuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) backWithSuccess:(SuccessBlock)success failure:(FailureBlock)failure Sends the back button key code to
the TV.

Related capabilities:
¢ KeyControl.Back
Parameters:
* success — Optional SuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) homeWithSuccess:(SuccessBlock)success failure:(FailureBlock)failure Sends the home button key code
to the TV.

Related capabilities:
¢ KeyControl.Home
Parameters:
* success — Optional SuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) sendKeyCode:(NSUInteger)keyCode success:(SuccessBlock)success failure:(FailureBlock)failure
Sends a key code value to the TV.

Related capabilities:
¢ KeyControl.Send.KeyCode
Parameters:
* keyCode
* success: success — Optional SuccessBlock to be called on success

e failure: failure — Optional FailureBlock to be called on failure

Launcher

The Launcher capability protocol serves to define the methods required for normalizing the launching of apps. It
allows for in-built support for certain common launch types (deep-linking to YouTube, Netflix, Hulu, browser, etc) as
well as by (platform-specific) app id.

Methods

- (id<Launcher>) launcher
- (CapabilityPriorityLevel) launcherPriority

- (void) launchApp:(NSString *)appld success:(AppLaunchSuccessBlock)success failure:(FailureBlock)failure
Launch an application on the device.

Related capabilities:

¢ Launcher.App

348 Chapter 5. Promote Your TV App

connectSDK

Parameters:
 appld — ID of the application
* success: success — Optional AppLaunchSuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) launchAppWithInfo:(AppInfo *)appInfo success:(AppLaunchSuccessBlock)success failure:(FailureBlock)failure
Launch an application on the device.

Related capabilities:
* Launcher.App
* Launcher.App.Params — if launching with params
Parameters:
* applnfo — Applnfo object for the application
* success: success — Optional AppLaunchSuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) launchAppWithInfo:(AppInfo *)appInfo params:(NSDictionary *)params success:(AppLaunchSuccessBlock)success fail
Launch an application on the device.

Related capabilities:
* Launcher.App
e Launcher.App.Params —if launching with params
Parameters:
 applnfo — Applnfo object for the application
* params: params
* success: success — Optional AppLaunchSuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) closeApp:(LaunchSession *)launchSession success:(SuccessBlock)success failure:(FailureBlock)failure
Close an application on the device.

Related capabilities:
e Launcher.App.Close
Parameters:
* launchSession — LaunchSession of the target app
* success: success — Optional SuccessBlock to be called on success
« failure: failure — Optional FailureBlock to be called on failure

- (void) getAppListWithSuccess:(AppListSuccessBlock)success failure:(FailureBlock)failure Gets a list of all
apps installed on the device.

Related capabilities:
e Launcher.App.List
Parameters:

* success — Optional AppListSuccessBlock to be called on success

5.16. API References 349

connectSDK

* failure: failure — Optional FailureBlock to be called on failure

- (void) getRunningAppWithSuccess:(AppInfoSuccessBlock)success failure:(FailureBlock)failure Gets an Ap-
plInfo object for the current running app on the device.

Related capabilities:
e Launcher.RunningApp

Parameters:
* success — Optional AppInfoSuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (ServiceSubscription *) subscribeRunningAppWithSuccess:(AppInfoSuccessBlock)success failure:(FailureBlock)failure
Subscribes to changes of the current running app. Every time the running app changes, the success block will
be called with an Applnfo object for the current running app.

Related capabilities:
e Launcher.RunningApp.Subscribe

Parameters:
* success — Optional AppInfoSuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) getAppState:(LaunchSession *)launchSession success:(AppStateSuccessBlock)success failure:(FailureBlock)failure
Gets the target app’s running status and on-screen visibility.

Related capabilities:
e Launcher.AppState
Parameters:
* launchSession — LaunchSession of the target app
* success: success — Optional AppStateSuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (ServiceSubscription *) subscribeAppState:(LaunchSession *)launchSession success:(AppStateSuccessBlock)success failure:(Fai

Subscribes to changes of the state of the target app. Every time the app’s state changes, the success
block will be called with info on the app’s running status and on-screen visibility.

Related capabilities:
* Launcher.AppState.Subscribe
Parameters:
* JaunchSession — LaunchSession of the target app
* success: success — Optional AppStateSuccessBlock to be called on success
« failure: failure — Optional FailureBlock to be called on failure

- (void) launchAppStore:(NSString *)appld success:(AppLaunchSuccessBlock)success failure:(FailureBlock)failure
Launch the device’s app store app, optionally deep-linked to a specific app’s page.

Related capabilities:

e Launcher.AppStore

350 Chapter 5. Promote Your TV App

connectSDK

e Launcher.AppStore.Params
Parameters:
* appld — (optional) ID of the application to show in the app store
* success: success — Optional AppLaunchSuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) launchBrowser:(NSURL *)target success:(AppLaunchSuccessBlock)success failure:(FailureBlock)failure
Launch the web browser. Will launch deep-linked to provided URL, if supported on the target platform.

Related capabilities:
* Launcher.Browser
* Launcher.Browser.Params — if launching with url
Parameters:
* target — URL to open
* success: success — Optional AppLaunchSuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) launchYouTube:(NSString *)contentld success:(AppLaunchSuccessBlock)success failure:(FailureBlock)failure
Launch YouTube app. Will launch deep-linked to provided contentld, if supported on the target platform.

Related capabilities:
* Launcher.YouTube
* Launcher.YouTube.Params — if launching with contentld
Parameters:
 contentld — Video id to open
* success: success — Optional AppLaunchSuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) launchYouTube:(NSString *)contentld startTime:(float)startTime success:(AppLaunchSuccessBlock)success failure:(Fail
Launch YouTube app. Will launch deep-linked to provided contentld, if supported on the target platform.

Related capabilities:

* Launcher.YouTube

e Launcher.YouTube.Params —if launching with contentld
Parameters:

* contentld — Video id to open

e startTime: startTime

* success: success — Optional AppLaunchSuccessBlock to be called on success

* failure: failure — Optional FailureBlock to be called on failure

5.16. API References 351

connectSDK

Typedefs
ApplnfoSuccessBlock

void(™)(AppInfo *applnfo)
Success block that is called upon requesting info about the current running app.
* applnfo

Object containing info about the running app

AppLaunchSuccessBlock

void(M)(LaunchSession *launchSession)

Success block that is called upon successfully launching an app.

AppListSuccessBlock

void(*)(NSArray *appList)
Success block that is called upon successfully getting the app list.
* appList

Array containing an Applnfo object for each available app on the device

AppStateSuccessBlock

void(*)(BOOL running, BOOL visible)
Success block that is called upon successfully getting an app’s state.
* running
Whether the app is currently running
* visible

Whether the app is currently visible on the screen

MediaControl

The MediaControl capability protocol serves to define the methods required for normalizing the control of media
playback (play, pause, fast forward, etc) as well as obtaining media information (playhead position, duration, etc).

Methods

- (id<MediaControl>) mediaControl

- (CapabilityPriorityLevel) mediaControlPriority

- (void) playWithSuccess:(SuccessBlock)success failure:(FailureBlock)failure Send play command.

Related capabilities:

352 Chapter 5. Promote Your TV App

connectSDK

e MediaControl.Play
Parameters:
* success — Optional SuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure
- (void) pauseWithSuccess:(SuccessBlock)success failure:(FailureBlock)failure Send pause command.
Related capabilities:
¢ MediaControl.Pause
Parameters:
* success — Optional SuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure
- (void) stopWithSuccess:(SuccessBlock)success failure:(FailureBlock)failure Send play command.
Related capabilities:
e MediaControl.Stop
Parameters:
* success — Optional SuccessBlock to be called on success
« failure: failure — Optional FailureBlock to be called on failure
- (void) rewind WithSuccess:(SuccessBlock)success failure:(FailureBlock)failure Send rewind command.
Related capabilities:
¢ MediaControl.Rewind
Parameters:
* success — Optional SuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure
- (void) fastForwardWithSuccess:(SuccessBlock)success failure:(FailureBlock)failure Send play command.
Related capabilities:
* MediaControl.FastForward
Parameters:
* success — Optional SuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) seek:(NSTimelnterval)position success:(SuccessBlock)success failure:(FailureBlock)failure Seeks to a
new position within the current media item

Related capabilities:
* MediaControl.Seek
Parameters:
* position
* success: success — Optional SuccessBlock to be called on success

* failure: failure — Optional FailureBlock to be called on failure

5.16. API References 353

connectSDK

- (void) getDurationWithSuccess:(MediaDurationSuccessBlock)success failure:(FailureBlock)failure
Parameters:

* success — Optional MediaDurationSuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) getPositionWithSuccess:(MediaPositionSuccessBlock)success failure:(FailureBlock)failure
Parameters:

* success — Optional MediaPositionSuccessBlock to be called on success
« failure: failure — Optional FailureBlock to be called on failure
- (void) getMediaMetaDataWithSuccess:(SuccessBlock)success failure:(FailureBlock)failure Parameters:
* success — Optional SuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) getPlayStateWithSuccess:(MediaPlayStateSuccessBlock)success failure:(FailureBlock)failure
Parameters:

* success — Optional MediaPlayStateSuccessBlock to be called on success
« failure: failure — Optional FailureBlock to be called on failure

- (ServiceSubscription *) subscribePlayStateWithSuccess:(MediaPlayStateSuccessBlock)success failure:(FailureBlock)failure
Parameters:

* success — Optional MediaPlayStateSuccessBlock to be called on success
e failure: failure — Optional FailureBlock to be called on failure

- (ServiceSubscription *) subscribeMedialnfoWithSuccess:(SuccessBlock)success failure:(FailureBlock)failure
Parameters:

* success — Optional SuccessBlock to be called on success

* failure: failure — Optional FailureBlock to be called on failure

Typedefs
MediaPlayStateSuccessBlock

void(™)(MediaControlPlayState playState)
Success block that is called upon any change in a media file’s play state.
* playState

Play state of the current media file

MediaPositionSuccessBlock

void(*)(NSTimelnterval position)
Success block that is called upon successfully getting the media file’s current playhead position.
* position

Current playhead position of the current media file, in seconds

354 Chapter 5. Promote Your TV App

connectSDK

MediaDurationSuccessBlock

void(M)(NSTimelnterval duration)
Success block that is called upon successfully getting the media file’s duration.
* duration

Duration of the current media file, in seconds

MediaPlayer

The MediaPlayer capability protocol serves to define the methods required for displaying media on the device.

Methods

- (id<MediaPlayer>) mediaPlayer
- (CapabilityPriorityLevel) mediaPlayerPriority

- (void) displayImageWithMedialnfo:(Medialnfo *)medialnfo success:(MediaPlayerSuccessBlock)success failure:(FailureBlock)f
Parameters:

* medialnfo
* success: success — Optional MediaPlayerSuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) playMediaWithMedialnfo:(Medialnfo *)medialnfo shouldLoop:(BOOL)shouldLoop success:(MediaPlayerSuccessBlock)
Parameters:

* medialnfo

¢ shouldLoop: shouldLoop

* success: success — Optional MediaPlayerSuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) closeMedia:(LaunchSession *)launchSession success:(SuccessBlock)success failure:(FailureBlock)failure
Close a running media session. Because media is handled differently on different platforms, it is required to keep
track of LaunchSession and MediaControl objects to control that media session in the future. LaunchSession
will be required to close the media and mediaControl will be required to control the media.

Related capabilities:
e MediaPlayer.Close
Parameters:
* launchSession — LaunchSession object for use in closing media instance
* success: success — Optional SuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) displayImage:(NSURL *)imageURL iconURL:(NSURL *)iconURL title:(NSString *)title description:(NSString *)descri
Display an image on the device. Not all devices support all of the parameters — supply as many as you have
available.

Related capabilities:

5.16. API References 355

connectSDK

e MediaPlayer.Display.Image
* MediaPlayer.MediaData.Title
* MediaPlayer.MediaData.Description
e MediaPlayer.MediaData.Thumbnail
e MediaPlayer.MediaData.MimeType
Parameters:
» imageURL — URL of image to open
e iconURL: iconURL — URL of an icon to show next to the title
« title: title — Title text to display
* description: description — Description text to display
* mimeType: mimeType — MIME type of the image, for example “image/jpeg”
* success: success — Optional MediaPlayerDisplaySuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) displayImage:(Medialnfo *)medialnfo success:(MediaPlayerDisplaySuccessBlock)success failure:(FailureBlock)failure
Display an image on the device. Not all devices support all of the parameters — supply as many as you have
available.

Related capabilities:
* MediaPlayer.Display.Image
e MediaPlayer.MediaData.Title
* MediaPlayer.MediaData.Description
* MediaPlayer.MediaData.Thumbnail
* MediaPlayer.MediaData.MimeType
Parameters:
* medialnfo — Object of Medialnfo class which includes all the information about an image to display.
* success: success — Optional MediaPlayerDisplaySuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) playMedia:(NSURL *)mediaURL iconURL:(NSURL #*)iconURL title:(NSString *)title description:(NSString *)descriptic
Play an audio or video file on the device. Not all devices support all of the parameters — supply as many as you
have available.

Related capabilities:
* MediaPlayer.Play.Video
* MediaPlayer.Play.Audio
* MediaPlayer.MediaData.Title
e MediaPlayer.MediaData.Description
e MediaPlayer.MediaData.Thumbnail
¢ MediaPlayer.MediaData.MimeType

Parameters:

356 Chapter 5. Promote Your TV App

connectSDK

* mediaURL — URL of media file to open

* iconURL: iconURL — URL of an icon to show next to the title

« title: title — Title text to display

* description: description — Description text to display

* mimeType: mimeType — MIME type of the video, for example “video/mpeg4”, “audio/mp3”, etc
* shouldLoop: shouldLoop — Whether to automatically loop playback

* success: success — Optional MediaPlayerDisplaySuccessBlock to be called on success

* failure: failure — Optional FailureBlock to be called on failure

- (void) playMedia:(Medialnfo *)medialnfo shouldLoop:(BOOL)shouldLoop success:(MediaPlayerDisplaySuccessBlock)success 1

Play an audio or video file on the device. Not all devices support all of the parameters — supply as many as you
have available.

Related capabilities:
* MediaPlayer.Play.Video
* MediaPlayer.Play.Audio
* MediaPlayer.MediaData.Title
e MediaPlayer.MediaData.Description
e MediaPlayer.MediaData.Thumbnail
¢ MediaPlayer.MediaData.MimeType
Parameters:
* medialnfo — Object of Medialnfo class which includes all the information about an image to display.
* shouldLoop: shouldLoop — Whether to automatically loop playback
* success: success — Optional MediaPlayerDisplaySuccessBlock to be called on success

* failure: failure — Optional FailureBlock to be called on failure

Typedefs
MediaPlayerDisplaySuccessBlock

void(M)(LaunchSession *launchSession, id<MediaControl> mediaControl)
Success block that is called upon successfully playing/displaying a media file.
* launchSession
LaunchSession to allow closing this media player
* mediaControl

MediaControl object used to control playback

MediaPlayerSuccessBlock

void(™)(MediaLaunchObject *medialLaunchObject)

5.16. API References 357

connectSDK

MouseControl

The MouseControl capability serves to define the methods required for normalizing a mouse/trackpad (move/scroll
with relative coordinates and click).

Methods

- (id<MouseControl>) mouseControl
- (CapabilityPriorityLevel) mouseControlPriority

- (void) connectMouseWithSuccess:(SuccessBlock)success failure:(FailureBlock)failure Establish a connection
with the DeviceService’s mouse communication medium (WebSocket, HTTP, etc). While this step may not
be necessary with certain platforms, it is suggested to call it anyways, for purposes of seamless normalization.
Calling connect on a non-connectable protocol will just trigger the success callback immediately.

Related capabilities:
* MouseControl.Connect
Parameters:
* success — Optional SuccessBlock to be called on success
« failure: failure — Optional FailureBlock to be called on failure
- (void) disconnectMouse Disconnects from the mouse communication medium.
Related capabilities:
¢ MouseControl.Disconnect

- (void) clickWithSuccess:(SuccessBlock)success failure:(FailureBlock)failure Perform a click action at the cur-
rent mouse position.

Related capabilities:
¢ MouseControl.Click
Parameters:
* success — Optional SuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) move:(CGVector)distance success:(SuccessBlock)success failure:(FailureBlock)failure Move the mouse
by the given distance values.

Related capabilities:
¢ MouseControl.Move
Parameters:
* distance — Distance to move the mouse relative to its current position
* success: success — Optional SuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) scroll:(CGVector)distance success:(SuccessBlock)success failure:(FailureBlock)failure Scroll by the
given distance values.

Related capabilities:

* MouseControl.Scroll

358 Chapter 5. Promote Your TV App

connectSDK

Parameters:
* distance — Distance to scroll relative to current position
* success: success — Optional SuccessBlock to be called on success

* failure: failure — Optional FailureBlock to be called on failure

PlayListControl

Methods

- (id<PlayListControl>) playListControl
- (CapabilityPriorityLevel) playListControlPriority

- (void) playNextWithSuccess:(SuccessBlock)success failure:(FailureBlock)failure Plays the next track in the
playlist

Parameters:
* success — Optional SuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) playPreviousWithSuccess:(SuccessBlock)success failure:(FailureBlock)failure Plays the previous track
in the playlist

Parameters:
* success — Optional SuccessBlock to be called on success
« failure: failure — Optional FailureBlock to be called on failure

- (void) jumpToTrackWithIndex:(NSInteger)index success:(SuccessBlock)success failure:(FailureBlock)failure
Jumps to track in the playlist

Parameters:
* index — NSInteger a zero based index parameter.
* success: success — Optional SuccessBlock to be called on success

* failure: failure — Optional FailureBlock to be called on failure

PowerControl

The PowerControl capability protocol serves to define the methods required for normalizing power off functionality.

Methods

- (id<PowerControl>) powerControl
- (CapabilityPriorityLevel) power ControlPriority
- (void) powerOffWithSuccess:(SuccessBlock)success failure:(FailureBlock)failure

Sends a power off signal to the TV. A success message will, internally, trigger a disconnection with
the device.

Related capabilities:

5.16. API References 359

connectSDK

* PowerControl.Off
Parameters:
* success — Optional SuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure
- (void) powerOnWithSuccess:(SuccessBlock)success failure:(FailureBlock)failure Parameters:
* success — Optional SuccessBlock to be called on success

« failure: failure — Optional FailureBlock to be called on failure

TVControl

The TVControl capability protocol serves to define the methods required for normalizing common TV-specific com-
mands (channel up/down, channel list, channel info, etc).

Methods

- (id<TVControl>) tvControl
- (CapabilityPriorityLevel) tvControlPriority

- (void) channelUpWithSuccess:(SuccessBlock)success failure:(FailureBlock)failure Sends a channel up com-
mand to the TV.

Related capabilities:
¢ TVControl.Channel.Up
Parameters:
* success — Optional SuccessBlock to be called on success
« failure: failure — Optional FailureBlock to be called on failure

- (void) channelDownWithSuccess:(SuccessBlock)success failure:(FailureBlock)failure Sends a channel down
command to the TV.

Related capabilities:
e TVControl.Channel.Down
Parameters:
* success — Optional SuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) setChannel:(Channellnfo *)channellnfo success:(SuccessBlock)success failure:(FailureBlock)failure
Sets the current channel to the channel provided by the Channellnfo object provided.

Related capabilities:
e TVControl.Channel.Set

Parameters:
* channellnfo — Channellnfo object containing information about the desired channel
* success: success — Optional SuccessBlock to be called on success

« failure: failure — Optional FailureBlock to be called on failure

360 Chapter 5. Promote Your TV App

connectSDK

- (void) getCurrentChannelWithSuccess:(CurrentChannelSuccessBlock)success failure:(FailureBlock)failure
Gets the current channel info from the TV.

Related capabilities:
e TVControl.Channel.Get

Parameters:
* success — Optional CurrentChannelSuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (ServiceSubscription *) subscribeCurrentChannelWithSuccess:(CurrentChannelSuccessBlock)success failure:(FailureBlock)fai
Subscribes to any changes in the current channel. Each time the channel is changed, the new channel’s info will
be provided to the success callback.

Related capabilities:
¢ TVControl.Channel.Subscribe

Parameters:
* success — Optional CurrentChannelSuccessBlock to be called on success
« failure: failure — Optional FailureBlock to be called on failure

- (void) getChannelListWithSuccess:(ChannelListSuccessBlock)success failure:(FailureBlock)failure Get a list
of available channels from the TV.

Related capabilities:
¢ TVControl.Channel.List

Parameters:
 success — Optional ChannelListSuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) getProgramInfoWithSuccess:(ProgramiInfoSuccessBlock)success failure:(FailureBlock)failure Gets the
current program info from the TV.

Related capabilities:
e TVControl.Program.Get

Parameters:
* success — Optional ProgramInfoSuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (ServiceSubscription *) subscribeProgramInfoWithSuccess:(ProgramInfoSuccessBlock)success failure:(FailureBlock)failure
Subscribes to any changes in the current program. Each time the channel is changed or a new program starts,
the new program’s info will be provided to the success callback.

Related capabilities:
e TVControl.Program.Subscribe
Parameters:
* success — Optional ProgramInfoSuccessBlock to be called on success

* failure: failure — Optional FailureBlock to be called on failure

5.16. API References 361

connectSDK

- (void) getProgramListWithSuccess:(ProgramListSuccessBlock)success failure:(FailureBlock)failure Gets a
list of all programs scheduled to play on the current channel.

Related capabilities:
e TVControl.Program.List

Parameters:
* success — Optional ProgramListSuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (ServiceSubscription *) subscribeProgramListWithSuccess:(ProgramListSuccessBlock)success failure:(FailureBlock)failure
Subscribes to any changes in the current program. Each time the channel is changed or a new program starts,
the new program’s info will be provided to the success callback.

Related capabilities:
e TVControl.Program.List.Subscribe

Parameters:
* success — Optional ProgramListSuccessBlock to be called on success
« failure: failure — Optional FailureBlock to be called on failure

- (void) get3DEnabledWithSuccess:(TV3DEnabledSuccessBlock)success failure:(FailureBlock)failure Gets the
current 3D status of the TV.

Related capabilities:
¢ TVControl.3D.Get

Parameters:
* success — Optional TV3DEnabledSuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) set3DEnabled:(BOOL)enabled success:(SuccessBlock)success failure:(FailureBlock)failure Sets the
current 3D status of the TV.

Related capabilities:
e TVControl.3D.Set
Parameters:
* enabled — Whether the TV’s 3D mode should be on or off
* success: success — Optional SuccessBlock to be called on success
« failure: failure — Optional FailureBlock to be called on failure

- (ServiceSubscription *) subscribe3DEnabledWithSuccess:(TV3DEnabledSuccessBlock)success failure:(FailureBlock)failure
Subscribes to changes in the TV’s 3D status.

Related capabilities:
¢ TVControl.3D.Subscribe
Parameters:
* success — Optional TV3DEnabledSuccessBlock to be called on success

* failure: failure — Optional FailureBlock to be called on failure

362 Chapter 5. Promote Your TV App

connectSDK

Typedefs
CurrentChannelSuccessBlock

void(*)(Channellnfo *channellnfo)
Success block that is called upon successfully getting the current channel’s information.
e channellnfo

Object containing information about the current channel

ChannelListSuccessBlock

void(")(NSArray *channelList)
Success block that is called upon successfully getting the channel list.
* channelList

Array containing a Channellnfo object for each available channel on the TV

PrograminfoSuccessBlock

void(*)(Programlinfo *programInfo)
Success block that is called upon successfully getting the current program’s information.
e programlnfo

Object containing information about the current program

ProgramListSuccessBlock

void(*)(NSArray *programList)
Success block that is called upon successfully getting the program list for the current channel.
e programList

Array containing a ProgramInfo object for each available program on the TV’s current channel

TV3DEnabledSuccessBlock

void(")(BOOL tv3DEnabled)
Success block that is called upon successfully getting the TV’s 3D mode
* tv3DEnabled
Whether 3D mode is currently enabled on the TV

TextlnputControl

The TextInputControl capability serves to define the methods required for normalizing common text input commands
(send text, enter, delete, keyboard status).

5.16. API References 363

connectSDK

Methods

- (id<TextInputControl>) textInputControl
- (CapabilityPriorityLevel) textiInputControlPriority

- (ServiceSubscription *) subscribeTextInputStatusWithSuccess:(TextInputStatusInfoSuccessBlock)success failure:(FailureBlock
Subscribe to information about the current text field.

Related capabilities:
e TextInputControl.Subscribe

Parameters:
* success — Optional TextInputStatusInfoSuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) send Text:(NSString *)input success:(SuccessBlock)success failure:(FailureBlock)failure Send text to the
current text field.

Related capabilities:
e TextInputControl.Send.Text
Parameters:
* input
* success: success — Optional SuccessBlock to be called on success
e failure: failure — Optional FailureBlock to be called on failure

- (void) sendEnter WithSuccess:(SuccessBlock)success failure:(FailureBlock)failure Send enter key to the current
text field.

Related capabilities:
¢ TextInputControl.Send.Enter
Parameters:
* success — Optional SuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) sendDeleteWithSuccess:(SuccessBlock)success failure:(FailureBlock)failure Send delete event to the cur-
rent text field.

Related capabilities:
e TextInputControl.Send.Delete
Parameters:
* success — Optional SuccessBlock to be called on success

* failure: failure — Optional FailureBlock to be called on failure

Typedefs
TextlnputStatusinfoSuccessBlock

void(M)(TextinputStatusinfo *textInputStatusInfo)

364 Chapter 5. Promote Your TV App

connectSDK

Response block that is fired on any change of keyboard visibility.
* textInputStatusInfo

provides keyboard type & visibility information

ToastControl

The ToastControl capability protocol serves to define the methods required for displaying toast messages on the TV.

Toasts may optionally provide an 80x80 pixel icon in PNG or JPEG format, encoded as base64. The icon will be
displayed alongside the toast message.

Methods

- (id<ToastControl>) toastControl
- (CapabilityPriorityLevel) toastControlPriority

- (void) showToast:(NSString *)message success:(SuccessBlock)success failure:(FailureBlock)failure Show a
toast on the TV.

Parameters:
* message — Message to display
* success: success — Optional SuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) showToast:(NSString *)message iconData:(NSString *)iconData iconExtension:(NSString *)iconExtension success:(Succ
Show a toast on the TV.

Parameters:
* message — Message to display
* iconData: iconData — Base-64 encoded JPEG or PNG data
* iconExtension: iconExtension — File extension of icon
* success: success — Optional SuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) showClickableToast:(NSString *)message appInfo:(AppInfo *)appInfo params:(NSDictionary *)params success:(Success
Show a toast on the TV and perform an action when the toast is clicked on the TV.

Related capabilities:
e ToastControl.Show.Clickable.App
e ToastControl.Show.Clickable.App.Params
* ToastControl.Show.Clickable.URL
Parameters:
* message — Message to display
e applnfo: appInfo — Applnfo for app to launch on click of toast
e params: params — Launch params for app

* success: success — Optional SuccessBlock to be called on success

5.16. API References 365

connectSDK

* failure: failure — Optional FailureBlock to be called on failure

- (void) showClickableToast:(NSString *)message appInfo:(AppInfo *)appInfo params:(NSDictionary *)params iconData:(NSSt
Show a toast on the TV and perform an action when the toast is clicked on the TV.

Related capabilities:
e ToastControl.Show.Clickable.App
* ToastControl.Show.Clickable.App.Params
¢ ToastControl.Show.Clickable.URL
Parameters:
* message — Message to display
« applnfo: appInfo — Applnfo for app to launch on click of toast
e params: params — Launch params for app
* iconData: iconData — Base-64 encoded JPEG or PNG data
 iconExtension: iconExtension — File extension of icon
* success: success — Optional SuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) showClickableToast:(NSString *)message URL:(NSURL *)URL success:(SuccessBlock)success failure:(FailureBlock)fai
Show a toast on the TV and perform an action when the toast is clicked on the TV.

Related capabilities:
e ToastControl.Show.Clickable.App
* ToastControl.Show.Clickable.App.Params
¢ ToastControl.Show.Clickable.URL
Parameters:
* message — Message to display
e URL: URL - URL to launch in browser
* success: success — Optional SuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) showClickableToast:(NSString *)message URL:(NSURL *)URL iconData:(NSString *)iconData iconExtension:(NSStrir
Show a toast on the TV and perform an action when the toast is clicked on the TV.

Related capabilities:

e ToastControl.Show.Clickable.App

* ToastControl.Show.Clickable.App.Params

* ToastControl.Show.Clickable.URL
Parameters:

* message — Message to display

e URL: URL - URL to launch in browser

¢ iconData: iconData — Base-64 encoded JPEG or PNG data

¢ iconExtension: iconExtension — File extension of icon

366 Chapter 5. Promote Your TV App

connectSDK

* success: success — Optional SuccessBlock to be called on success

* failure: failure — Optional FailureBlock to be called on failure

VolumeControl

The VolumeControl capability protocol serves to define the methods required for normalizing common volume specific
commands (volume up/down, mute, etc).

Methods

- (id<VolumeControl>) volumeControl
- (CapabilityPriorityLevel) volumeControlPriority

- (void) volumeUpWithSuccess:(SuccessBlock)success failure:(FailureBlock)failure Sends the volume up com-
mand to the device.

Related capabilities:
¢ VolumeControl.UpDown
Parameters:
* success — Optional SuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) volumeDownWithSuccess:(SuccessBlock)success failure:(FailureBlock)failure Sends the volume down
command to the device.

Related capabilities:
¢ VolumeControl.UpDown
Parameters:
* success — Optional SuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) getVolumeWithSuccess:(VolumeSuccessBlock)success failure:(FailureBlock)failure Get the current vol-
ume of the device.

Related capabilities:
* VolumeControl.Get

Parameters:
* success — Optional VolumeSuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) setVolume:(float)volume success:(SuccessBlock)success failure:(FailureBlock)failure Set the volume of
the device.

Related capabilities:
e VolumeControl. Set
Parameters:

¢ volume — Volume as a float between 0.0 and 1.0

5.16. API References 367

connectSDK

* success: success — Optional SuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (ServiceSubscription *) subscribe VolumeWithSuccess:(VolumeSuccessBlock)success failure:(FailureBlock)failure
Subscribe to the volume on the TV.

Related capabilities:
¢ VolumeControl.Subscribe

Parameters:
* success — Optional VolumeSuccessBlock to be called on success
« failure: failure — Optional FailureBlock to be called on failure

- (void) getMuteWithSuccess:(MuteSuccessBlock)success failure:(FailureBlock)failure Get the current mute
state.

Related capabilities:
¢ VolumeControl.Mute.Get

Parameters:
* success — Optional MuteSuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) setMute:(BOOL)mute success:(SuccessBlock)success failure:(FailureBlock)failure Set the current vol-
ume.

Related capabilities:
¢ VolumeControl.Mute. Set
Parameters:
* mute
* success: success — Optional SuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (ServiceSubscription *) subscribeMuteWithSuccess:(MuteSuccessBlock)success failure:(FailureBlock)failure
Subscribe to the mute state on the TV.

Related capabilities:
¢ VolumeControl.Mute.Subscribe
Parameters:
* success — Optional MuteSuccessBlock to be called on success

* failure: failure — Optional FailureBlock to be called on failure

Typedefs
VolumeSuccessBlock

void(*)(float volume)

Success block that is called upon successfully getting the device’s system volume.

368 Chapter 5. Promote Your TV App

connectSDK

e volume

Current system volume, value is a float between 0.0 and 1.0

MuteSuccessBlock

void(*)(BOOL mute)
Success block that is called upon successfully getting the device’s system mute status.
* mute

Current system mute status

WebAppLauncher

The WebAppLauncher capability protocol provides capabilities for launching web apps and establishing two-way
communication.

Methods

- (id<WebAppLauncher>) webAppLauncher
- (CapabilityPriorityLevel) webAppLauncherPriority

- (void) launchWebApp:(NSString *)webAppld success:(WebAppLaunchSuccessBlock)success failure:(FailureBlock)failure
Launch a web application on the TV.

Related capabilities:
* WebAppLauncher.Launch
* WebAppLauncher.Launch.Params — if launching with params
Parameters:
* webAppld — ID of web app assigned by platform vendor
* success: success — Optional WebAppLaunchSuccessBlock to be called on success
e failure: failure — Optional FailureBlock to be called on failure

- (void) launchWebApp:(NSString *)webAppld params:(NSDictionary *)params success:(WebAppLaunchSuccessBlock)success f
Launch a web application on the TV.

Related capabilities:
* WebAppLauncher.Launch
* WebAppLauncher.Launch.Params — if launching with params
Parameters:
* webAppld — ID of web app assigned by platform vendor
e params: params — Dictionary of key/value strings. Not available on all target platforms
* success: success — Optional WebAppLaunchSuccessBlock to be called on success

* failure: failure — Optional FailureBlock to be called on failure

5.16. API References 369

connectSDK

- (void) launchWebApp:(NSString *)webAppld relaunchIfRunning:(BOOL)relaunchIfRunning success:(WebAppLaunchSuccess.
Launch a web application on the TV.

This method requires pairing on webOS
Related capabilities:

e WebAppLauncher.Launch

* WebAppLauncher.Launch.Params — if launching with params
Parameters:

* webAppld — ID of web app assigned by platform vendor

¢ relaunchIfRunning: relaunchIfRunning — If supported on target platform, web app will force relaunch if
value true

* success: success — Optional WebAppLaunchSuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) launchWebApp:(NSString *)webAppld params:(NSDictionary *)params relaunchIfRunning:(BOOL)relaunchIfRunning
Launch a web application on the TV.

This method requires pairing on webOS
Related capabilities:
* WebAppLauncher.Launch
* WebAppLauncher.Launch.Params — if launching with params
Parameters:
* webAppld — ID of web app assigned by platform vendor
e params: params — Dictionary of key/value strings. Not available on all target platforms

¢ relaunchIfRunning: relaunchIfRunning — If supported on target platform, web app will force relaunch if
value true

* success: success — Optional WebAppLaunchSuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) joinWebApp:(LaunchSession *)webAppLaunchSession success:(WebAppLaunchSuccessBlock)success failure:(FailureBlo
Join an active web app without launching/relaunching. If the app is not running/joinable, the failure block will
be called immediately.

Related capabilities:
* WebAppLauncher. Send
* WebAppLauncher.Receive
Parameters:
* webAppLaunchSession — LaunchSession for the web app to be joined
* success: success — Optional WebAppLaunchSuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) joinWebAppWithId:(NSString *)webAppld success:(WebAppLaunchSuccessBlock)success failure:(FailureBlock)failure
Join an active web app without launching/relaunching. If the app is not running/joinable, the failure block will
be called immediately.

Related capabilities:

370 Chapter 5. Promote Your TV App

connectSDK

* WebAppLauncher.Send
* WebAppLauncher.Receive
Parameters:
* webAppld — Unique identifier for the web app to be joined
* success: success — Optional WebAppLaunchSuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) closeWebApp:(LaunchSession *)launchSession success:(SuccessBlock)success failure:(FailureBlock)failure
Closes a web app with the provided LaunchSession.

Related capabilities:
* WebAppLauncher.Close
Parameters:
¢ launchSession — LaunchSession associated with the web app to be closed
* success: success — Optional SuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) pinWebApp:(NSString *)webAppld success:(SuccessBlock)success failure:(FailureBlock)failure
Parameters:

* webAppld
* success: success — Optional SuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) unPinWebApp:(NSString *)webAppld success:(SuccessBlock)success failure:(FailureBlock)failure
Parameters:

* webAppld
* success: success — Optional SuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) isWebAppPinned:(NSString *)webAppld success:(WebAppPinStatusBlock)success failure:(FailureBlock)failure
Parameters:

* webAppld
* success: success — Optional WebAppPinStatusBlock to be called on success
« failure: failure — Optional FailureBlock to be called on failure

- (ServiceSubscription *) subscribelsWebAppPinned:(NSString *)webAppld success:(WebAppPinStatusBlock)success failure:(Fe
Parameters:

* webAppld
* success: success — Optional WebAppPinStatusBlock to be called on success

* failure: failure — Optional FailureBlock to be called on failure

5.16. API References 371

connectSDK

Typedefs
WebAppLaunchSuccessBlock

void(")(WebAppSession *webAppSession)
Success block that is called upon successfully launch of a web app.
* webAppSession

Object containing important information about the web app’s session. This object is required to perform many
functions with the web app, including app-to-app communication, media playback, closing, etc.

ScreenMirroringControl

The ScreenMirroringControl capability protocol serves to define the methods required for displaying the mobile app
screen to LG TV.

Methods

- (id<ScreenMirroring Control>) ScreenMirroringControl
- (CapabilityPriorityLevel) screenMirroringControlPriority
- (void) startScreenMirroring Requests to start the screen mirroring

- (void) startScreenMirroringWithSettings:(nullable NSDictionary<NSString , id> *) *settings Requests to start
the screen mirroring after setting up.

Parameters:
* settings — screen mirroring settings

- (void) pushSampleBuffer:(CMSampleBufferRef)sampleBuffer with:(RPSampleBufferType)sampleBufferType
Delivers video/audio data captured by Upload Extension to screen mirroring.

Parameters:
» sampleBuffer — A reference to an immutable sample buffer object
» with: sampleBufferType — The type of sample buffered
- (void) stopScreenMirroring Requests to stop the screen mirroring

- (void) setScreenMirroringDelegate:(__weak id<ScreenMirroringControlDelegate>)delegate Registers a dele-
gate to receive events while running the screen mirroring.

Parameters:
* delegate

ScreenMirroringControlDelegate

ScreenMirroringControlDelegate allows your app to receive screen mirroring status information.

372 Chapter 5. Promote Your TV App

connectSDK

Methods

- (void) screenMirroringDidStart:(BOOL) result Calls to pass the result of a screen mirroring start request.
Parameters:
e result — Screen mirroring start result
- (void) screenMirroringDidStop:(BOOL)result Calls to pass the result of a screen mirroring stop request.
Parameters:
e result — Screen mirroring stop result

- (void) screenMirroringErrorDidOccur:(ScreenMirroringError)error Calls when an error occurs after starting
the screen mirroring. For error types, refer to ScreenMirroringError.

Parameters:

e error — Screen mirroring error

RemoteCameraControl

The RemoteCameraControl capability protocol serves to define the methods required for using the mobile camera for
the LG TV.

Methods

- (id<Remote CameraControl>) remoteCameraControl
- (CapabilityPriorityLevel) remoteCameraControlPriority
- (UIView *) startRemoteCamera Requests to start the remote camera.
¢ Default Camera Settings: Front
¢ Default Sound Settings: With Sound
Returns:
» UlView - Returns an object for the UI'View created to show the camera preview.

- (UIView *) startRemoteCameraWithSettings:(nullable NSDictionary<NSString *, id> *) setfings Requests to
start the remote camera after setting up the camera.

» kRemoteCameraSettingsMicMute: Mute setting
* kRemoteCameraSettingsLensFacing: Front/rear camera settings
Parameters:
* settings — Camera settings
Returns:
» UlView - Returns an object for the UI'View created to show the camera preview.
- (void) stopRemoteCamera Requests to stop the remote camera
- (void) setLensFacing:(int)lensFacing Sets the front/rear camera lens use.
* Front camera settings: RemoteCameral.ensFacingFront (Default)

* Rear camera settings: RemoteCameralensFacingBack

5.16. API References 373

connectSDK

Parameters:
¢ lensFacing — Camera lens direction
- (void) setMicMute:(BOOL)micMute Sets the mute function of the microphone. (Default: NO)
Parameters:
* micMute — Microphone mute settings

- (void) setRemoteCameraDelegate:(__weak id<RemoteCameraControlDelegate>)delegate Registers a delegate
to receive events while running the remote camera.

Parameters:

* delegate

RemoteCameraControlDelegate

RemoteCameraControlDelegate allows your app to receive remote camera status information.

Methods

- (void)remoteCameraDidPair Calls when the remote camera and TV are first connected (You have to guide the user
to accept the connection on the TV.)

- (void)remoteCameraDidStart:(BOOL)result Calls to pass success or failure of connection with TV after starting
remote camera function

Parameters:
¢ result — Connection result with TV
- (void) remoteCameraDidStop:(BOOL)result Calls to pass the result of a remote camera stop request.
Parameters:
* result — Remote camera stop result

- (void) remoteCameraDidPlay Calls when data transmission starts by requesting remote camera execution from
TV.

- (void) remoteCameraDidChange:(RemoteCameraProperty)property Calls when a camera setting is changed by
TV App request. For the property types, refer to RemoteCameraProperty.

Parameters:
¢ property — Remote camera property

- (void) remoteCameraErrorDidOccur:(RemoteCameraError)error Calls when an error occurs after starting the
remote camera. For error types, refer to RemoteCameraError.

Parameters:

e error — Remote camera error

5.16.5 Sessions

374 Chapter 5. Promote Your TV App

connectSDK

LaunchSession

Any time anything is launched onto a first screen device, there will be important session information that needs to be
tracked. LaunchSession will track this data, and must be retained to perform certain actions within the session.

Properties

NSString * appld System-specific, unique ID of the app (ex. youtube.leanback.v4, 0000134, hulu)
NSString * name User-friendly name of the app (ex. YouTube, Browser, Hulu)

NSString * sessionld Unique ID for the session (only provided by certain protocols)

id rawData Raw data from the first screen device about the session. In most cases, this is an NSDictionary.

LaunchSessionType sessionType When closing a LaunchSession, the DeviceService relies on the sessionType to
determine the method of closing the session.

DeviceService * service DeviceService responsible for launching the session.

Methods

- (BOOL) isEqual:(LaunchSession *)launchSession Compares two LaunchSession objects.
Parameters:
¢ launchSession — LaunchSession object to compare.
Returns: YES if both LaunchSession id and sessionld values are equal

- (void) closeWithSuccess:(SuccessBlock)success failure:(FailureBlock)failure Closes the session on the first
screen device. Depending on the sessionType, the associated service will have different ways of handling the
close functionality.

Parameters:
* success — (optional) SuccessBlock to be called on success
e failure: failure — (optional) FailureBlock to be called on failure

+ (LaunchSession *) launchSessionForApplId:(NSString *)appld Instantiates a LaunchSession object for a given
app ID.

Parameters:
* appld — System-specific, unique ID of the app

+ (LaunchSession *) launchSessionFromJSONObject:(NSDictionary *)json Deserializes a LaunchSession
object from json object.

Parameters:

* json — Serialized LaunchSession object by — [LaunchSession toJSONObject].

LaunchSessionType

LaunchSession type is used to help DeviceService’s know how to close a LunchSession.

5.16. API References 375

connectSDK

Properties

LaunchSessionTypeUnknown Unknown LaunchSession type, may be unable to close this launch session
LaunchSessionTypeApp LaunchSession represents a launched app

LaunchSessionTypeExternallnputPicker LaunchSession represents an external input picker that was launched
LaunchSessionTypeMedia LaunchSession represents a media app

LaunchSessionTypeWebApp LaunchSession represents a web app

WebAppSession

Overview

When a web app is launched on a first screen device, there are certain tasks that can be performed with that web
app. WebAppSession serves as a second screen reference of the web app that was launched. It behaves similarly to
LaunchSession, but is not nearly as static.

In Depth

On top of maintaining session information (contained in the launchSession property), WebAppSession provides access
to a number of capabilities.

* MediaPlayer
* MediaControl
* Bi-directional communication with web app

MediaPlayer and MediaControl are provided to allow for the most common first screen use cases a media player
(audio, video, & images).

The Connect SDK JavaScript Bridge has been produced to provide normalized support for these capabilities across
protocols (Chromecast, webOS, etc).

Properties

LaunchSession * launchSession LaunchSession object containing key session information. Much of this information
is required for web app messaging & closing the web app.

DeviceService * service DeviceService that was responsible for launching this web app.

id<WebAppSessionDelegate> delegate When messages are received from a web app, they are parsed into the appro-
priate object type (string vs JSON/NSDictionary) and routed to the WebAppSessionDelegate.

Methods

- (instancetype) initWithLaunchSession:(LaunchSession *)launchSession service:(DeviceService *)service
Instantiates a WebAppSession object with all the information necessary to interact with a web app.

Parameters:
¢ launchSession — LaunchSession containing info about the web app session

* service: service — DeviceService that was responsible for launching this web app

376 Chapter 5. Promote Your TV App

connectSDK

- (ServiceSubscription *) subscribeWebAppStatus:(WebAppStatusBlock)success failure:(FailureBlock)failure
Subscribes to changes in the web app’s status.

Parameters:
* success — (optional) WebAppStatusBlock to be called on app status change
* failure: failure — (optional) FailureBlock to be called on failure

- (void) joinWithSuccess:(SuccessBlock)success failure:(FailureBlock)failure Join an active web app without
launching/relaunching. If the app is not running/joinable, the failure block will be called immediately.

Parameters:
* success — (optional) SuccessBlock to be called on join success
e failure: failure — (optional) FailureBlock to be called on failure

- (void) closeWithSuccess:(SuccessBlock)success failure:(FailureBlock)failure Closes the web app on the first
screen device.

Parameters:
* success — (optional) SuccessBlock to be called on success
« failure: failure — (optional) FailureBlock to be called on failure

- (void) connectWithSuccess:(SuccessBlock)success failure:(FailureBlock)failure Establishes a communication
channel with the web app.

Parameters:
* success — (optional) SuccessBlock to be called on success
* failure: failure — (optional) FailureBlock to be called on failure
- (void) disconnectFromWebApp Closes any open communication channel with the web app.

- (void) pinWebApp:(NSString *)webAppld success:(SuccessBlock)success failure:(FailureBlock)failure Pin the
web app on the launcher.

Parameters:
¢ webAppld — NSString webAppld to be pinned.
* success: success — Optional SuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) unPinWebApp:(NSString *)webAppld success:(SuccessBlock)success failure:(FailureBlock)failure
UnPin the web app on the launcher.

Parameters:
* webAppld — NSString webAppld to be unpinned.
* success: success — Optional SuccessBlock to be called on success
* failure: failure — Optional FailureBlock to be called on failure

- (void) isWebAppPinned:(NSString *)webAppld success:(WebAppPinStatusBlock)success failure:(FailureBlock)failure
To check if the web app is pinned or not

Parameters:
* webAppld

* success: success — Optional WebAppPinStatusBlock to be called on success

5.16. API References 377

connectSDK

* failure: failure — Optional FailureBlock to be called on failure

- (void) send Text:(NSString *)message success:(SuccessBlock)success failure:(FailureBlock)failure Sends a
simple string to the web app. The Connect SDK JavaScript Bridge will receive this message and hand it off as
a string object.

Parameters:
* message
* success: success — (optional) SuccessBlock to be called on success
* failure: failure — (optional) FailureBlock to be called on failure

- (void) sendJSON:(NSDictionary *)message success:(SuccessBlock)success failure:(FailureBlock)failure
Sends a JSON object to the web app. The Connect SDK JavaScript Bridge will receive this message and hand
it off as a JavaScript object.

Parameters:
* message
e success: success — (optional) SuccessBlock to be called on success

e failure: failure — (optional) FailureBlock to be called on failure

Typedefs
WebAppStatusBlock

void(")(WebAppStatus status)
Success block that is called upon successfully getting a web app’s status.
* status

The current running & foreground status of the web app

WebAppPinStatusBlock

void(M)(BOOL status)
Success block that is called upon successfully getting a web app’s status.
¢ status

The current running & foreground status of the web app

WebAppSessionDelegate

WebAppSessionDelegate provides callback methods for receiving messages from a running web app.

Methods

- (void) webAppSession:(WebAppSession *)webAppSession didReceiveMessage:(id)message This method is

called when a message is received from a web app.

Parameters:

378 Chapter 5. Promote Your TV App

connectSDK

* webAppSession — WebAppSession that corresponds to the web app that sent the message

¢ didReceiveMessage: message — Message from the web app, either an NSString or a JSON object in the
form of an NSDictionary

- (void) webAppSessionDidDisconnect:(WebAppSession *)webAppSession This method is called when a web app’s
communication channel (WebSocket, etc) has become disconnected.

Parameters:

* webAppSession — WebAppSession that became disconnected

WebAppStatus

Status of the web app

Properties

WebAppStatusUnknown Web app status is unknown

WebAppStatusOpen Web app is running and in the foreground
WebAppStatusBackground Web app is running and in the background
WebAppStatusForeground Web app is in the foreground but has not started running yet

WebAppStatusClosed Web app is not running and is not in the foreground or background

5.16.6 Info Objects

Applinfo
Normalized reference object for information about a DeviceService’s app. This object will, in most cases, be used to
launch apps.

In some cases, all that is needed to launch an app is the app id. For these cases, a static constructor method has been
provided.

Properties

NSString * id ID of the app on the first screen device. Format is different depending on the platform. (ex.
youtube.leanback.v4, 0000001134, netflix, etc).

NSString * name User-friendly name of the app (ex. YouTube, Browser, Netflix, etc).

id rawData Raw data from the first screen device about the app. In most cases, this is an NSDictionary.

Methods

- (BOOL) isEqual:(AppInfo *)appInfo Compares two Applnfo objects.
Parameters:
 applnfo — Applnfo object to compare.
Returns: YES if both AppInfo id values are equal

5.16. API References 379

connectSDK

+ (AppInfo *) appInfoForld:(NSString *)appld Static constructor method.
Parameters:

* appld — ID of the app on the first screen device

Channelinfo

Normalized reference object for information about a TVs channels. This object is required to set the channel on a TV.

Properties

NSString * id TV’s unique ID for the channel

NSString * name User-friendly name of the channel

NSString * number TV channel’s number (likely to be a combination of the major & minor numbers)
int majorNumber TV channel’s major number

int minorNumber TV channel’s minor number

id rawData Raw data from the first screen device about the channel. In most cases, this is an NSDictionary.

Methods

- (BOOL) isEqual:(Channellnfo *)channellnfo Compares two Channellnfo objects.
Parameters:
¢ channellnfo — Channellnfo object to compare.

Returns: YES if both Channellnfo number & name values are equal

Externallnputinfo

Normalized reference object for information about a DeviceService’s external inputs. This object is required to set a
DeviceService’s external input.

Properties

NSString * id ID of the external input on the first screen device.

NSString * name User-friendly name of the external input (ex. AV, HDMI]I, etc).

BOOL connected Whether the DeviceService is currently connected to this external input.
NSURL * iconURL URL to an icon representing this external input.

id rawData Raw data from the first screen device about the external input. In most cases, this is an NSDictionary.

380 Chapter 5. Promote Your TV App

connectSDK

Methods

- (BOOL) isEqual:(ExternallnputInfo *)externallnputInfo Compares two ExternallnputInfo objects.
Parameters:
« externallnputIinfo — ExternallnputInfo object to compare.

Returns: YES if both ExternallnputInfo id & name values are equal

Imagelnfo

Normalized reference object for information about an image to be sent to a device through the MediaPlayer capability.

Properties

NSURL * url URL source of the image

ImageType type Type of image (see ImageType enum)
NSInteger width Width of the image (optional)
NSInteger height Height of the image (optional)

Methods

- (instancetype) initWithURL:(NSURL *)url type:(ImageType)type Creates an instance of Imagelnfo with given
property values.

Parameters:
* url — URL source of the image

* type: type — Type of image (see ImageType enum)

Typedefs
ImageType

NSUlInteger

MediaControlPlayState

Properties

MediaControlPlayStateUnknown
MediaControlPlayStateldle
MediaControlPlayStatePlaying
MediaControlPlayStatePaused
MediaControlPlayStateBuffering
MediaControlPlayStateFinished

5.16. API References 381

connectSDK

Medialnfo

Normalized reference object for information about a media file to be sent to a device through the MediaPlayer capa-
bility. “Media file”, in this context, refers to an audio or video resource.

Properties

NSURL * url URL source of the media file

NSString * mimeType Mime-type of the media file

NSString * title Title of the media file (optional)

NSString * description Short description of the media file (optional)
NSTimelnterval duration Duration of the media file

NSArray * images Collection of Imagelnfo objects to send, as necessary, to the device when launching media
through the MediaPlayer capability.

SubtitleInfo * subtitleInfo Subtitle track for this media instance (optional).

Methods

- (instancetype) initWithURL:(NSURL *)url mimeType:(NSString *)mimeType Creates an instance of Medi-
alnfo with given property values.

Parameters:
 url — URL source of the media file
* mimeType: mimeType — Mime-type of the media file
- (void) addImage:(Imagelnfo *)image Adds an Imagelnfo object to the array of images.
Parameters:
» image — Imagelnfo object to be added
- (void) addImages:(NSArray *)images Adds an array of Imagelnfo objects to the array of images.
Parameters:

* images - Array of Imagelnfo objects to be added

MediaLaunchObject

MediaLLaunchObject is a container object which holds LaunchSession object,MediaControl object/or and PlayList-
Control object

Properties

id<MediaControl> mediaControl MediaControl object of Media player
id<PlayListControl> playListControl PlayList Control Object of Media player

LaunchSession * session Launch Session object of Media player

382 Chapter 5. Promote Your TV App

connectSDK

Methods

- (instancetype) initWithLaunchSession:(LaunchSession *)session andMediaControl:(id<MediaControl>)mediaControl
Creates an instance of MediaL.aunchObject with given property values.

Parameters:
* session
* andMediaControl: mediaControl — MediaControl object used to control playback

- (instancetype) initWithLaunchSession:(LaunchSession *)session andMediaControl:(id<MediaControl>)mediaControl andPlay]
Parameters:

* session
¢ andMediaControl: mediaControl

* andPlayListControl: playListControl

Programinfo

Normalized reference object for information about a TVs program.

Properties

NSString * id ID of the program on the first screen device. Format is different depending on the platform.
NSString * name User-friendly name of the program (ex. Sesame Street, Cosmos, Game of Thrones, etc).
Channellnfo * channellnfo Reference to the Channellnfo object that this program is associated with

id rawData Raw data from the first screen device about the program. In most cases, this is an NSDictionary.

Methods

- (BOOL) isEqual:(ProgramlInfo *)programlInfo Compares two ProgramInfo objects.
Parameters:
 programlInfo — ProgramInfo object to compare.

Returns: YES if both ProgramInfo id & name values are equal

Subtitleinfo

Represents a subtitle track used for media playing.

The URL is required, so the —init method will throw an exception. Please use the parameterized initializers.
This class is immutable.

Different services support specific subtitles formats:

* DLNA service supports SRT format only. Since there is no official specification for them, subtitles may not
work on all DLNA-compatible devices.

* Netcast service supports SRT format only, through DLNA.

5.16. API References 383

connectSDK

* Google Cast service supports WebVTT format only and has additional requirements: https://developers.google.
com/cast/docs/ios_sender#cors-requirements

* FireTV service supports WebVTT format only. Subtitles on Fire TV are hidden by default and should be dis-
played manually by the user.

* WebOS service supports WebVTT format only. Server providing subtitles should support CORS headers, simi-
larly to Cast service’s requirements.

Properties

NSURL * url The subtitle track’s URL.
NSString * mimeType The subtitle’s mimeType.
NSString * language The subtitle’s source language. The contents depend on the target device.

NSString * label A custom label that may be displayed by a device’s media player.

Methods

+ (instancetype) infoWithURL:(NSURL *)url Creates a new instance with the given url.
Parameters:
e url

+ (instancetype) infoWithURL:(NSURL *)url andBlock:(void(*)(SubtitleInfoBuilder *builder))block Creates a
new instance with the given url and properties set in the builder object.

Parameters:
e url

¢ andBlock: block

SubtitleinfoBuilder

Used to initialize a SubtitleInfo object in a convenient way. The properties are writable at this point, and then
become readonly in a final object.

You should not create this object manually. It is passed as a parameter to +[SubtitleInfo
infoWithURL:andBlock:] method.

http://www.annema.me/the-builder-pattern-in-objective-c

Properties

NSString * mimeType The subtitle’s mimeType.
NSString * language The subtitle’s source language. The contents depend on the target device.
NSString * label A custom label that may be displayed by a device’s media player.

TextInputStatusinfo

Normalized reference object for information about a text input event.

384 Chapter 5. Promote Your TV App

https://developers.google.com/cast/docs/ios_sender#cors-requirements
https://developers.google.com/cast/docs/ios_sender#cors-requirements
http://www.annema.me/the-builder-pattern-in-objective-c

connectSDK

Properties

UIKeyboardType keyboardType Type of keyboard that should be displayed to the user.
BOOL isVisible Whether the keyboard is/should be visible to the user.

id rawData Raw data from the first screen device about the text input status. In most cases, this is an NSDictionary.

ScreenMirroringError

Enumerates error type

Properties

ScreenMirroringErrorGeneric The general error
ScreenMirroringErrorConnectionClosed The error that occurs when the network is disconnected
ScreenMirroringErrorDeviceShutdown The error that occurs when the TV shuts down

ScreenMirroringErrorRendererTerminated The error that occurs when the TV app is closed

RemoteCameraProperty

Enumerates property type

Properties

RemoteCameral.ensFacingFront The front camera
RemoteCameraLensFacingBack The rear camera
RemoteCameraPropertyUnknown The unregistered attribute
RemoteCameraPropertyBrightness The brightness property
RemoteCameraPropertyWhitebalance The white balance property

RemoteCameraPropertyRotation The screen rotation properties

RemoteCameraError

Enumerates error type

Properties

RemoteCameraErrorGeneric The general error
RemoteCameraErrorConnectionClosed The error that occurs when the network is disconnected
RemoteCameraErrorDeviceShutdown The error that occurs when the TV shuts down

RemoteCameraErrorRendererTerminated The error that occurs when the TV app is closed

5.16. API References 385

connectSDK

5.16.7 Advanced

ConnectableDeviceStore

ConnectableDeviceStore is a protocol which can be implemented to save key information about ConnectableDevices
that have been connected to. Any class which implements this protocol can be used as DiscoveryManager’s deviceS-
tore.

A default implementation, DefaultConnectableDeviceStore, will be used by DiscoveryManager if no other Con-
nectableDeviceStore is provided to DiscoveryManager when startDiscovery is called.

Privacy Considerations

If you chose to implement ConnectableDeviceStore, it is important to keep your users’ privacy in mind.
* There should be UI elements in your app to
— completely disable ConnectableDeviceStore
— purge all data from ConnectableDeviceStore (removeAll)
* Your ConnectableDeviceStore implementation should
— avoid tracking too much data (indefinitely storing all discovered devices)

— periodically remove ConnectableDevices from the ConnectableDeviceStore if they haven’t been
used/connected in X amount of time

Properties

NSDictionary * storedDevices A dictionary containing information about all ConnectableDevices in the Con-
nectableDeviceStore. To get a strongly-typed ConnectableDevice object, use the getDeviceForUUID:
method.

Methods

- (void) addDevice:(ConnectableDevice *)device Add a ConnectableDevice to the ConnectableDeviceStore. If the
ConnectableDevice is already stored, it’s record will be updated.

Parameters:
¢ device — ConnectableDevice to add to the ConnectableDeviceStore

- (void) updateDevice:(ConnectableDevice *)device Updates a ConnectableDevice’s record in the ConnectableDe-
viceStore. If the ConnectableDevice is not in the store, this call will be ignored.

Parameters:
 device — ConnectableDevice to update in the ConnectableDeviceStore

- (void) removeDevice:(ConnectableDevice *)device Removes a ConnectableDevice’s record from the Con-
nectableDeviceStore.

Parameters:

¢ device — ConnectableDevice to remove from the ConnectableDeviceStore

386 Chapter 5. Promote Your TV App

connectSDK

- (ConnectableDevice *) deviceForIld:(NSString *)id Gets a ConnectableDevice object for a provided id. The id
may be for the ConnectableDevice object or any of the device’s DeviceServices.

Parameters:
¢ id — Unique ID for a ConnectableDevice or any of its DeviceService objects
Returns: ConnectableDevice object if a matching id was found, otherwise will return nil

- (ServiceConfig *) serviceConfigForUUID:(NSString *)UUID Gets a ServiceConfig object for a provided UUID.
This is used by DiscoveryManager to retain crucial service information between sessions (pairing code, etc).

Parameters:
e UUID - Unique ID for the service
Returns: ServiceConfig object if a matching UUID was found, otherwise will return nil

- (void) removeAll Clears out the ConnectableDeviceStore, removing all records.

DefaultConnectableDeviceStore

DefaultConnectableDeviceStore is an implementation of ConnectableDeviceStore provided by Connect SDK for your
convenience. This class will be used by DiscoveryManager as the default ConnectableDeviceStore if no other Con-
nectableDeviceStore implementation is provided before calling startDiscovery.

Privacy Considerations

As outlined in ConnectableDeviceStore, this class takes the following steps to ensure users’ privacy.
* Only ConnectableDevices that have been connected to will be permanently stored

¢ On load & store, ConnectableDevices that have not been discovered within the maxStoreDuration will be re-
moved from the ConnectableDeviceStore

File Format

DefaultConnectableDeviceStore stores data in a JSON file named Connect_SDK_Device_Store. json in the
documents directory.

Properties

double maxStoreDuration Max length of time for a ConnectableDevice to remain in the ConnectableDeviceStore
without being discovered. Default is 3 days, and modifications to this value will trigger a scan for old devices.
ConnectableDevices that have been connected to will never be removed from the device store unless remove :
or removeAll are called.

double created Date (in seconds from 1970) that the ConnectableDeviceStore was created.
double updated Date (in seconds from 1970) that the ConnectableDeviceStore was last updated.

int version Current version of the ConnectableDeviceStore, may be necessary for migrations

5.16. API References 387

connectSDK

5.16.8 Globals

ConnectStatusCode

Helpful status codes that augment the localizedDescriptions of NSErrors that crop up throughout many places of the
SDK. Most NSErrors that Connect SDK provides will have a ConnectStatusCode.

Properties

ConnectStatusCodeError Generic error, unknown cause
ConnectStatusCodeTvError The TV experienced an error
ConnectStatusCodeCertificateError SSL certificate error
ConnectStatusCodeSocketError Error with WebSocket connection
ConnectStatusCodeNotSupported Requested action is not supported

ConnectStatusCodeArgumentError There was a problem with the provided arguments, see error description for
details

ConnectStatusCodeNotConnected Device is not connected

Globals

Typedefs
GCDWebServerAsyncStreamBlock

void(")(GCDWebServerBodyReaderCompletionBlock completionBlock)

The GCDWebServerAsyncStreamBlock works like the GCDWebServerStreamBlock except the streamed data can be
returned at a later time allowing for truly asynchronous generation of the data.

The block must call “completionBlock” passing the new chunk of data when ready, an empty NSData when done, or
nil on error and pass a NSError.

The block cannot call “completionBlock” more than once per invocation.

GCDWebServerBodyReaderCompletionBlock

void(M)(NSData *data, NSError *error)

The GCDWebServerBodyReaderCompletionBlock is passed by GCDWebServer to the GCDWebServerBodyReader
object when reading data from it asynchronously.

GCDWebServerMatchBlock

)(NSString *requestMethod, NSURL *requestURL, NSDictionary *requestHeaders, NSString *urlPath, NSDic-
tionary *urlQuery)
The GCDWebServerMatchBlock is called for every handler added to the GCDWebServer whenever a new HTTP

request has started (i.e. HTTP headers have been received). The block is passed the basic info for the request (HTTP
method, URL, headers. ..) and must decide if it wants to handle it or not.

388 Chapter 5. Promote Your TV App

connectSDK

If the handler can handle the request, the block must return a new GCDWebServerRequest instance created with the
same basic info. Otherwise, it simply returns nil.

GCDWebServerCompletionBlock

void(")(GCDWebServerResponse *response)

The GCDWebServerAsynchronousProcessBlock works like the GCDWebServerProcessBlock except the GCDWeb-
ServerResponse can be returned to the server at a later time allowing for asynchronous generation of the response.

The block must eventually call “completionBlock” passing a GCDWebServerResponse or nil on error, which will result
in a 500 HTTP status code returned to the client. It’s however recommended to return a GCDWebServerErrorResponse
on error so more useful information can be returned to the client.

GCDWebServerProcessBlock

)(GCDWebServerRequest *request)

The GCDWebServerProcessBlock is called after the HTTP request has been fully received (i.e. the entire HTTP body
has been read). The block is passed the GCDWebServerRequest created at the previous step by the GCDWebServer-
MatchBlock.

The block must return a GCDWebServerResponse or nil on error, which will result in a 500 HTTP status code returned
to the client. It’s however recommended to return a GCDWebServerErrorResponse on error so more useful information
can be returned to the client.

GCDWebServerStreamBlock

NSData *(")(NSError **error)

The GCDWebServerStreamBlock is called to stream the data for the HTTP body. The block must return either a
chunk of data, an empty NSData when done, or nil on error and set the “error” argument which is guaranteed to be
non-NULL.

FailureBlock

void(”*)(NSError *error)

Generic asynchronous operation response error handler block. In all cases, you will get a valid NSError object.
Connect SDK will make all attempts to give you the lowest-level error possible. In cases where an error is generated
by Connect SDK, an enumerated error code (ConnectStatusCode) will be present on the NSError object.

Low-level error example

Situation

Connect SDK receives invalid XML from a device, generating a parsing error

Result

Connect SDK will call the FailureBlock and pass off the NSError generated during parsing of the XML.

5.16. API References 389

connectSDK

High-level error example

Situation
An invalid value is passed to a device capability method
Result

The capability method will immediately invoke the FailureBlock and pass off an NSError object with a status code of
ConnectStatusCode ArgumentError.

¢ ¢rror

NSError object describing the nature of the problem. Error descriptions are not localized and mostly
intended for developer use. It is not recommended to display most error descriptions in Ul elements.

SuccessBlock

void(*)(id responseObject)

Generic asynchronous operation response success handler block. If there is any response data to be processed, it will
be provided via the responseObject parameter.

* responseObject

Contains the output data as a generic object reference. This value may be any of a number of types
(NSString, NSDictionary, NSArray, etc). It is also possible that responseObject will be nil for oper-
ations that don’t require data to be returned (move mouse, send key code, etc).

5.16.9 Misc

AppStateChangeNotifier

Listens to app state change events (didEnterBackground and didBecomeActive, in particular) and allows other com-
ponents be notified about them using a simpler AP

Properties

AppStateChangeBlock didBackgroundBlock The block is called when the app has entered background.
AppStateChangeBlock didForegroundBlock The block is called when the app has entered foreground.

id<BlockRunner> blockRunner The BlockRunner instance specifying where to run the blocks. The default value
is the main dispatch queue runner. Cannot be ni1, as it will reset to the default value.

Methods

- (void) startListening Starts listening for app state change events. This method is idempotent.
You MUST call -stopListening for this object to be removed.
- (void) stopListening Stops listening for app state change events. This method is idempotent.

This method MUST be called to dealloc this object if you called -~startListening before.

390 Chapter 5. Promote Your TV App

connectSDK

Typedefs
AppStateChangeBlock

void(*)()

Type of a block that is called on an app state change event.
BlockRunner
Abstracts and encapsulates asynchrony, that is how and where blocks are run. Using this protocol, you can eas-

ily change which dispatch queue or NSOperationQueue delegate blocks are run on, instead of hard-coding
dispatch_async (dispatch_get_main_queue (), ~{ }) ;. Forexample:

dispatch_qgqueue_t queue = dispatch_get_global_qgqueue (DISPATCH_QUEUE_PRIORITY_BACKGROUND,
<—>O),

AppStateChangeNotifier »notifier = [AppStateChangeNotifier new];

notifier.blockRunner = [[DispatchQueueBlockRunner alloc] initWithDispatchQueue:queue];

Another great use case is turning asynchronous tests into synchronous, making them faster and easier:

— (wvoid)testStartListeningShouldSubscribeToDidBackgroundEvent {
AppStateChangeNotifier snotifier = [AppStateChangeNotifier new];
notifier.blockRunner = [SynchronousBlockRunner new];

[notifier startListening];

_ _block BOOL verified = NO;
notifier.didBackgroundBlock = "{
verified = YES;
}i
[self postNotificationName:UIApplicationDidEnterBackgroundNotification];

XCTAssertTrue (verified, @"didBackgroundBlock should be called");

Here we use the synchronous block runner (instead of the default asynchronous, main queue one) to avoid writing
asynchronous tests with XCTestExpectation.

Methods

- (void) runBlock:(nonnull VoidBlock)block Runs the given block somewhere, depending on the concrete imple-
mentation.

Parameters:
¢ block — block to run; must not be nil.

- (void) runBlock:(nonnull VoidBlock)block Runs the given block somewhere, depending on the concrete imple-
mentation.

Parameters:

¢ block — block to run; must not be nil.

5.16. API References 391

connectSDK

Typedefs
VoidBlock

void(*)(void)

A type for blocks without arguments and no return value.

DispatchQueueBlockRunner

Dispatches a block asynchronously on the given dispatch_queue_t queue.

Please use the —~initWithDispatchQueue: initializer, because you must specify the queue.

Methods

- (instancetype) initWithDispatchQueue:(dispatch_queue_t)queue Designated initializer. Initializes the object
with the given dispatch queue which will run the blocks. The queue must not be nil.

Parameters:
* queue

+ (instancetype) mainQueueRunner Convenience method that returns a block runner with the main dispatch queue.

SubscriptionDeduplicator

Deduplicates subscription notifications with the same state. The state can be of any class, allowing NSNumber-
wrapped values.

It’s an immutable class.

Methods

- (instancetype) runBlock:(dispatch_block_t)block ifStateDidChangeTo:(id)newState If the new state is differ-
ent from the previous one, runs the b1 ock synchronously.

Parameters:
* block
« ifStateDidChangeTo: newState

Returns: a new instance that you should save to track the new state.

SynchronousBlockRunner

Runs a block synchronously on the current thread/queue (that is, in the middle of —runBlock: call).

392 Chapter 5. Promote Your TV App

connectSDK

5.17 TV Web Apps

TV web apps are similar to standard web apps that use common web technologies such as HTMLS, Javascript, and
CSS. TV web apps are typically optimized for larger displays.

To learn more
1. Read the Overview article
2. Learn how easy it is to Create a TV Web App

3. Learn how to Port a Receiver App to webOS

5.17.1 Overview

What are TV web apps?

* Most TV apps are web apps that are packaged to run on the TV. They are developed using standard web tech-
nologies.

* TV web apps can be viewed on a TV without a browser, since they execute inside a web runtime environment.

Why TV web apps?

webOS TV, Chromecast, and Apple TV allow synchronized experience across multiple devices through web sockets.
This enables users to interact with a TV web app using their mobile devices.

For example, if you created a TV chess board game app, users would not only interact with the app on the TV, they
would also be able to interact with the app using their mobile devices.

Web app IDs

Mobile web apps require a web app id in order to launch on webOS TV and Chromecast. This web app id is translated
into the mobile web app’s URL when it is launched on the TV.

Paltform URL

Web app id for webOS TV http://Igsvl.com/connectSDK/index.php

Web app id for Chromecast | https://developers.google.com/cast/docs/registration
Apple TV Apple TV does not require a web app id.

Important: When designing your TV web app, be mindful of Overscan. To avoid having parts of your web app cut
off, we recommend not placing UI elements near the corner of the screen and always test your web apps to ensure they
display properly on each targeted platform.

Interaction with TV web apps

All interactions with Chromecast and Apple TV web apps occur from a mobile device or laptop since the device does
not support external remote controls. On other platforms such as webOS, the TV ships with traditional and Magic
Remotes. When designing your web app, make sure to design for the platforms you intend to support. On Chromecast
and Apple TV, avoid using UI elements that make users think they are clickable. On webOS, make UI elements
clickable since users may use their Magic Remote to interact with your web app.

5.17. TV Web Apps 393

http://lgsvl.com/connectSDK/index.php
https://developers.google.com/cast/docs/registration
http://en.wikipedia.org/wiki/Overscan
http://webostv.developer.lge.com/design/webos-tv-system-ui/remote-control/
http://webostv.developer.lge.com/design/webos-tv-system-ui/remote-control/

connectSDK

Make sure to review all design guidelines for each platform you intend to support.

Web runtimes on various TV platforms may not be the same
While the HTMLS spec brings us one step closer to the “write once, run everywhere” utopia, we still recommend that
you test your web app on each TV platform you intend to support.

* Web rendering engines vary which may cause inconsistency across platforms. For example, webOS uses WebKit
2.0 and it is not officially documented what Chromecast and others use.

» Hardware differences between dongles, set-top boxes, and Smart TVs can be significant - therefore, complex
animations and computations should be reviewed.

 Screen resolution can vary between platforms and devices. webOS Smart TVs run at 1080P (1920x1080) while
Chromecast currently renders WebView in 720P (1280x720). Apple TV automatically adjusts to match the
resolution of the connected TV.

* Lastly, video and audio codec support can also cause fragmentation across multiple platforms.

Our experience has shown that using standard design patterns such as responsive design and standard video formats
(MP4) - there is little variation between most platforms.

5.17.2 Create a TV Web App

Connecting a web app with the JavaScript bridge is incredibly simple and requires a minimum amount of effort. First,
make sure you’ve got the right scripts imported.

* Google Cast SDK JavaScript Receiver file
* Connect SDK JavaScript Bridge

<script src="//www.gstatic.com/cast/sdk/libs/receiver/2.0.0/cast_receiver.js"
—language="JavaScript" type="text/javascript"></script>

<script src="connect_bridge.min.js" language="JavaScript" type="text/Jjavascript"></
—script>

After scripts are imported, it is a simple matter to get your app configured. No matter what platform you are running
on, the proper setup will occur to enable your web app.

window.connectManager = new connectsdk.ConnectManager ();
window.connectManager.init ();

Of course, if you actually want to enable any functionality in your web app, you will have to do a little more work.
Integration with Connect SDK happens on two different levels.

Media playback and control

window.mediaElement = document.getElementById('media');
window.connectManager.setMediaElement (window.mediaElement) ;

Bi-directional communication

394 Chapter 5. Promote Your TV App

https://developers.google.com/cast/docs/downloads
https://github.com/ConnectSDK/Connect-SDK-JavaScript-Bridge

connectSDK

Receiving messages

window.connectManager.on ("message", function (data) {
console.log("Got message from sender " + data.from);
console.log ("Got message from mobile device " + data.message);

)i

Sending messages

window.connectManager.sendMessage (to, "This is a test message");
window.connectManager.sendMessage (to, { "message" : "This is a JSON test message" });

window.connectManager.broadcastMessage ("This is a test message");
window.connectManager.broadcastMessage ({ "message" : "This is a JSON test message" });

5.17.3 Port a Receiver App to webOS
The Connect SDK JavaScript Bridge has been designed to enable near feature-parity with existing platforms. Ideally,
one web app should be capable of running across the range of TV platforms available on the market.

This article will take a Custom “Receiver” developed for Chromecast and port it to work on both webOS and Chrome-
cast through Connect SDK.

Here is the code for the Chromecast-specific app.

<!doctype html>
<html>
<head>
<title>Chromecast Custom Receiver</title>
</head>
<body>
<video id='media' />
<script src="//www.gstatic.com/cast/sdk/libs/receiver/2.0.0/cast_receiver.js"></
—script>
<script>
window.onload = function() {
window.mediaElement = document.getElementById('media');
window.mediaManager = new cast.receiver.MediaManager (window.mediaElement) ;

window.castReceiverManager = cast.receiver.CastReceiverManager.
—getInstance();

window.castMessageBus = window.castReceiverManager.getCastMessageBus (
—"urn:x—-cast:com.example.MyApp") ;
window.castMessageBus.addEventListener ("message", function (message) {
window.castMessageBus.broadcast ("Got your message");

)i

window.castReceiverManager.start () ;
bi
</secript>
</body>
</html>

There are a few things happening here.

5.17. TV Web Apps 395

connectSDK

1. The Chromecast SDK is being loaded
On page load, Chromecast SDK is being initialized

While initializing Chromecast, it is given a reference to our media element

Ll

A channel for communication is being established with a response on each message received
5. Event listeners are being added to the media element to track play state
With the Connect SDK JavaScript Bridge, these steps remain very similar.
1. This Chromecast SDK is being loaded
2. The Connect SDK JavaScript Bridge is being loaded
3. On page load, Connect SDK is being initialized
4. While initializing Connect SDK, it is given a reference to our media element
5. A channel for communication is being established with a response on each message received
6. Event listeners are being added to the media element to track play state

See the Connect SDK implementation below.

<!doctype html>
<html>
<head>

<title>Connect SDK Web App</title>
</head>
<body>

<video id='media' />

<script src="//www.gstatic.com/cast/sdk/libs/receiver/2.0.0/cast_receiver.js"></
—script>

<script src="connectsdk.js"></script>

<script>

window.onload = function () {
window.connectManager = new connectsdk.ConnectManager () ;

window.mediaElement = document.getElementById('media');
window.connectManager.setMediaElement (window.mediaElement) ;

window.connectManager.on ("message", function (data) {
window.connectManager.sendMessage (data.from, "Got your message");
1)

window.connectManager.init ();
}i
</script>
</body>
</html>

In this basic example, we were able to port an app from one platform to two by only adding one line of code (a
JavaScript file import). Under the hood, the Connect SDK JavaScript bridge will run the initialization for whichever
platform it is detected as running on.

We encourage you to attach media events directly to your media element to avoid having to add platform-specific code
to your web app.

Portions of this page are modifications based on work created and shared by Google and used according to terms
described in the Creative Commons 3.0 Attribution License.

396 Chapter 5. Promote Your TV App

https://developers.google.com/readme/policies/
http://creativecommons.org/licenses/by/3.0/

connectSDK

5.18 Release

5.18.1 ConnectSDK v1.6.0 Released

[Deepak Sharmal Posted by Deepak Sharma | September 9, 2015
We proudly announce the launch of ConnectSDK version 1.6.
New in this release, you can get your app to work with Android TVs. Isn’t it cool?

To improve the playback experience, we have added the support for subtitles. And great news for Cordova developers;
this version makes the build process really simple, with better playback experience with support for subtitles and
playlist controls and much more.

Here is a list of what’s new the ConnectSDK version /.6.0 offers:
* Cordova support

— Automatic install scripts for iOS and Android

Support for pinning web apps

Support for subtitles

Support for pairing type

Support for playlist controls

API for external input picker

Simplified way to determine device capabilities

Miscellaneous Bug fixes

* Subtitle support on WebOS, Netcast, DLNA, Chrome cast and FireTV.
* Support for Android TV devices.

* Fixed play media issue on Roku 6.2

* Removed Rewind and FastForward capabilities from Netcast service

* Miscellaneous bug fixes.

Please continue to help our work by contributing to our open-source effort and providing your valuable feedback to us.

5.18.2 ConnectSDK v1.5 Announcement

|Alpesh Saraiyal Posted by Alpesh Saraiya | July 9, 2015

With ConnectSDK version 1.5, we’re extremely proud to announce support for Amazon’s Fling SDK on Fire TV and
Fire Stick devices! iOS and Android Apps can now seamlessly beam video, audio, and images to Fire TV / Fire Stick.
We are looking forward to expanding support for Amazon products. To further integrate apps within Smart TVs, we
now have ability to pin web apps on webOS 2014+ TVs. Developers can now provide convenient, instant access to
a wealth of web apps like MusixMatch. If you have a web app to offer and want to increase your install base with
minimal effort, please register here. The combined iOS and Android release notes for ConnectSDK v1.5:

* Supports Amazon Fling SDK to play and control media on Fire TV devices
* Pinning web app on webOS TV launcher bar
* Enhanced webOS TV media player

— Added playlist and loop support

5.18. Release 397

http://lgsvl.com/connectSDK/index.php

connectSDK

— Extended play state subscription to handle media playback errors
* Added launching input picker for new versions of webOS TVs
* Fixed discovery for ChromeCast in Android

¢ Added ConnectSDK support for Windows on LG webOS and NetCast Smart TVs (big thanks to contributor
Sorin Serban!)

 Created a first set of integration and acceptance tests

We are working towards supporting some more exciting new features and device platforms in the coming months.
Please continue to help our work by contributing to our open-source effort and providing your valuable feedback to us.

5.18.3 Connect SDK 1.4.4 released

[Alpesh Saraiyal Posted by Alpesh Saraiya | April 27, 2015

With version 1.4.4, we’ve added support for Google Cast SDK 2.6.0, which allows streaming of audio to Google Cast-
enabled speakers, such as LG Music Flow speaker. Also we now support AirPlay pin mode for increased security.
Lastly, we’ve fixed a number of issues related to DLNA and other miscellaneous bugs.

The combined release notes for iOS and Android:
* Added AirPlay pin mode support
¢ Added LG Music Flow speaker support (Google Cast for Audio and DLNA)
* Support for Google Cast SDK 2.6.0
* Misc DLNA fixes
— DLNA subscription methods
* Allow to set pairing type for WebOS TVs
* Miscellaneous bug fixes
— Replaced DefaultHttpClient with HttpURLConnection

— Added a new exception class - NotSupportedServicecCommandError

Compiler and static analyzer warnings

Immediate disconnect if Apple TV has an IPv6 address only
— Lint warning

We are working towards some exciting features, including Windows SDK support and new device platforms support
in the coming months. Please continue to help our work by providing your valuable feedback to us.

5.18.4 Xbox One & Sonos support added to 1.4.2 release

[Vivek Sekarl Posted by Vivek Sekar | February 10, 2015

With the release of the 1.4.2 version of Connect SDK we have added support for Xbox One and Sonos Speakers, bring
the total number of platforms we support to 8. Along with the new platforms, we have added support for Playlist
functionality and improved the SSDP classes also.

The combined release notes for iOS and Android:
* Support for Xbox One console and Sonos speakers

¢ Added playlist support over DLNA

398 Chapter 5. Promote Your TV App

https://github.com/ConnectSDK/Connect-SDK-Windows
https://github.com/sdaemon

connectSDK

* Fixed video playing on Roku firmware 6.1
* Significantly improved SSDP classes
* Added new API’s to
— Display image & Play media
* Fixed saving service configuration
* Added support for Android Studio 1.0
¢ API Integration tests
* Miscellaneous bug fixes

Continuing our focus on quality, we have added a new repository Connect-SDK-Android-API-Sampler that focuses
on the testing the public API’s that are available as part of the Android SDK. We will focus on the iOS SDK next.

We are working towards some really cool and interesting features in the upcoming releases and cannot wait to get it
out. Support our work by providing your valuable feedback to us.

5.18.5 Connect SDK 1.4 is out

[Vivek Sekarl Posted by Vivek Sekar | December 3, 2014
We have just pushed out the code for the 1.4.0 release. Here is a quick overview of the additions we have made:
1.4.0 release notes
* Modularization of Connect SDK
* Improved support for DLNA devices
— DLNA volume control subscriptions
— DLNA play state subscriptions
— DLNA media info
* Unit tests for the discovery services providers
* Bug fixes in i0S, Android and Google Cast modules
Modularization

With the growing adoption of Connect SDK, a frequently requested feature has been for the developers to be able to
pick and choose the various devices they want to support in their applications. As they put it — it would allow them to
only have the necessary components as part of their application - so apps that directly stream media content does not
have to worry about the web app support or vice versa.

With the 1.4.0 release we are taking our first steps towards achieving modularization within the features offered by
Connect SDK. The 1.4.0 release allows developers to be able to pick between

* full (all you can eat version)
* lite (Connect SDK without the Google Cast) versions of Connect SDK.

Going forward in the upcoming releases we will add more and more of the existing features into this modularized
approach. So you can pick and choose the features, like DIAL, Google Cast, Roku, Apple TV, LG Smart TV’s,
DLNA.

DLNA

5.18. Release 399

https://github.com/ConnectSDK/Connect-SDK-Android-API-Sampler_IntegrationTest

connectSDK

WIth over 18,000 device models supporting DLNA, we are putting our efforts to be able to address these plethora of
devices. With the 1.4.0 release we have further improved the support for DLNA devices. With this release we have
added Volume control, play state & media info subscription. Along with some bug fixes to improve stability.

Unit tests

As Connect SDK grows to support more and more platforms and their SDK’s, We have started work towards having
a better overview on the quality of the code we are pushing out and integrating with. With the 1.4.0 release, we have
started adding unit test coverage for the search discovery providers. Going forward the work on the test coverage will
continue independent of the Connect SDK’s release cycle, so that we can catch up to all the work that has been put out
till now.

Just like the previous releases, we look forward to your feedback. We have already started working on Connect SDK
v1.4.1 and look forward to sharing it with you soon!

5.19 Article

5.19.1 Connect SDK Smart Home demo

[Vivek Sekarl Posted by Vivek Sekar | April 8, 2015

We have spent the last month working with some exciting Smart Home products & technologies. Now we are ready
to showcase our work.

We believe the Smart Homes of the future, are not going to be driven by devices from a single manufacturer, instead
a network of devices from various manufacturers. And interoperability will be a key part of the experience for these
devices to be able to deliver on the promise of simplifying the user’s life.

We hope to use the understanding from this showcase, to be able to deliver a solution for developers to be able to
leverage the various SDK’s out there to provide novel and innovative application solutions for the user.

We have made the Smart Home sampler app source code available in github.

This demo app demonstrates a scenario of using various Smart Home devices in two home scenes. They represent
a living room and a family room, each containing a media device, light bulbs, and possibly other devices. The
supported devices come from different categories (media players, light bulbs, switches, and iBeacons) and multiple
manufacturers.

The scenario of the app is:
1. You enter the living room, which is detected by an iBeacon,

2. A playlist starts to play on a TV or speaker, and the light bulbs change color to match one of the colors of the
album art during playback.

3. Then the user moves from the living room scene to the family room scene.
4. Where the session information is transfered from the living room to the family room.
* The devices in the living switch off and the session is picked up in the family room

5. The user put the scene to sleep using voice command (to replicate control using Siri or Google Now or other
voice engine/assitants)

* The speaker fades out the music, while the LED bulb fade out and switch off.
6. The Scene wakes up after a defined time - to mimic waking up from an alarm.

* The Led Bulbs switch on along with speaker.

400 Chapter 5. Promote Your TV App

connectSDK

For the source code & additional information
- https://github.com/ConnectSDK/SmartHomeSamplerAndroid
- https://github.com/ConnectSDK/SmartHomeSampleriOS

Support our work by providing your valuable feedback to us.

5.19.2 Recently Launched Connect SDK Apps and Upcoming 1.4 Release

IChris Cukorl Posted by Chris Cukor | September 29, 2014

Developers are excited about Connect SDK because it solves a lot of their day to day problems. We wanted share a
few recent examples of how Connect SDK is being used for music, premium content, and personal media.

MusiXMatch — Your favorite music with lyrics. Beam it all to your TV screen to enjoy with friends and family.

aa A Sky Full D
iF

i.b-‘
&

YOUR LIVING ROOM / v _
|S BETTER NO‘W Cause you're a sky full of stars

And cauke yollight up e path

Enjoy your music and lyrics on your TV with

Chromecast support and Apple TV

WDRE MITH

[al AirPlay £ chromecast

SnagFilms — The award-winning streaming video platform offers entertainment lovers an extensive library of over
5,000 free movies, TV series and web originals on demand.

SNAGFILMS

DISCOVER SOMETHING IIIFFEHEHI-V_

Seagate Media App — If you back up your personal media to one of Seagate’s enabled drives (Seagate Central, Wireless
Plus or LaCie Fuel), now you can enjoy your pictures, movies and music on your TV.

5.19. Article 401

https://github.com/ConnectSDK/SmartHomeSamplerAndroid
https://github.com/ConnectSDK/SmartHomeSampleriOS
http://musixmatch.com/
http://www.snagfilms.com/
http://www.seagate.com/services-software/apps/seagate-media-app/

connectSDK

We are working with more developer whose apps will be launching this year and we’ll be sure to keep you posted on
the highlights.

Check back soon for details about the upcoming 1.4 release that will support a host of new features and devices.

5.19.3 Connect SDK now supports Apple TV

[Henry Levakl Posted by Henry Levak | June 10, 2014

All of the devices we use should work harmoniously together - and in some cases they do. Take for example when
you receive an email, you have the ability to read it on your mobile phone, tablet, or PC. Similarly, when you begin
a Netflix movie on your desktop, you can finish watching it on your tablet and many other devices. Consumers are
beginning to expect this connected experience between some of their devices - but few expect it from the biggest screen
in their house. Being able start something on one device and continue it on the big screen is not as widely supported
as it should be - and we want to play a part in changing that.

While many app developers acknowledge the opportunity a big, high definition display can bring (other than a few
Chromecast-enabled apps) very few have implemented any app-to-TV functionality, and we don’t blame them. The
reality is, there are too many second screen protocols to choose from and the level of effort to integrate can be very
high. Not to mention, the market share of each protocol individually makes it difficulty to prioritize it over other
opportunities.

We saw these roadblocks for app developers as a huge opportunity and so we designed and built Connect SDK. Our
goal was simple, we wanted to expand the reach of second screen development by tackling the ever growing array
of second screen protocols. Our result being, a single SDK with integrated support for multiple protocols, in which
the effort of dealing with each one is abstracted away and the size of the opportunity is an aggregation of multiple
platforms.

It wasn’t too long ago in April 2014 that we launched Connect SDK with support for five TV platforms. Today we are
excited to announce that Connect SDK supports Apple TV with the release of version 1.3.

‘What does this mean?

402 Chapter 5. Promote Your TV App

connectSDK

For the Android app developer, you can now beam photos, videos, and audio files to Apple TVs. By using an
undocumented protocol, Connect SDK lets Android developers discover, connect to, and control Apple TVs, much
like webOS and Roku devices (for a full list of supported features, see Supported Features). And, because Connect
SDK abstracts all protocols, beaming a photo to an Apple TV is just as easy as beaming it to a Chromecast or LG
Smart TV “13.

For the iOS developer, you can choose between two modes, “Mirrored” and “Media”.

* In Mirrored mode, web app beaming is accomplished by using AirPlay to mirror a secondary display that
is actually being rendered on the iOS device. This allows developers to build full screen TV-optimzed web
applications that work across webOS, Chromecast, and now Apple TV. In order to use this mode, the user will
need to enable AirPlay mirroring in the Control Center. Also, as with any Airplay mirroring app - TV experience
will end if the user switches away from your app.

* In Media mode, photos, videos, and audio is beamed directly to an Apple TV. Using this mode provides the
most seamless user experience, but before using it, please review Apple’s developer guidelines as it is enabled
by an undocumented protocol. While all protocols are subject to change with software updates, undocumented
protocols may be particularly so.

As with any release, we look forward to your feedback. We have already started working on Connect SDK v1.4 and
look forward to sharing it with you soon!

5.20 Terms and Conditions

5.20.1 Copyright / Website Information

This website is owned and operated by LG Electronics Inc. (“LGE”). This website page may contain proprietary
notices and copyright information, the terms of which must be observed and followed. Users of the site may download
or print one copy of any and all materials on the site for personal, non-commercial use, provided that they do not
modify or alter the materials in any way, nor delete or change any copyright or trademark notice. All material on
this site is provided for lawful purposes only. None of the information on this site may be copied, distributed or
transmitted in any way for commercial use without the express written consent of LGE. LGE reserves full ownership
of and intellectual property rights in any materials downloaded from this site.

5.20.2 Submissions

LGE does not want to receive confidential or proprietary information from you through our website. Please note that
any information or material sent to LGE will be deemed NOT to be confidential. By sending LGE any information or
materials, you grant LGE an unrestricted, irrevocable license to use, reproduce, display, perform, modify, transmit and
distribute those materials or information in any media now or hereinafter existing, and you also agree that LGE is free
to use any ideas, concepts, know-how or techniques that you send us for any purpose.

5.20.3 Disclaimer of Warranty / Limitation of Liability

INFORMATION ON THIS WEBSITE IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EI-
THER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OF NONINFRINGEMENT. SOME JURISDIC-
TIONS DO NOT ALLOW FOR THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSIONS
MAY NOT APPLY TO YOU. IN NO EVENT WILL LGE BE LIABLE TO YOU OR ANY THIRD PARTY FOR
ANY INDIRECT, CONSEQUENTIAL, EXEMPLARY, INCIDENTAL, SPECIAL OR PUNITIVE DAMAGES, IN-
CLUDING, WITHOUT LIMITATION, LOST PROFIT DAMAGES ARISING FROM YOUR USE OF THIS WEB-
SITE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. NOTWITHSTANDING ANYTHING

5.20. Terms and Conditions 403

connectSDK

TO THE CONTRARY CONTAINED HEREIN, LGE’S LIABILITY TO YOU FOR ANY CAUSE WHATSOEVER
AND REGARDLESS OF THE FORM OF THE ACTION, WILL AT ALL TIMES BE LIMITED TO $100.00.

5.20.4 Third Party Websites

Certain links on this website link to third party websites outside the of LGE. LGE is not responsible for and disclaims
all liability with respect the content of any linked site or any link contained in a linked site and makes no representations
or warranties with respect to such third party sites.. The inclusion of any link in this website does not imply an
endorsement by LGE of any third party site or the information contained therein.

5.20.5 General

This website may contain inaccuracies and typographical errors. LGE does not warrant the accuracy or completeness
of the materials herein or the reliability of any advice, opinion, statement or other information displayed or distributed
through this website. You acknowledge that any reliance on any such opinion, advice, statement, or information shall
be at your sole risk. LGE reserves the right, in its sole discretion, to correct any errors or omissions in any portion of
the site. LGE may make changes to this website, at any time without notice. This Agreement operates to the fullest
extent permissible by law. If any provision of this Agreement is unlawful, void or unenforceable, that provision is
deemed severable from this Agreement and does not affect the validity and enforceability of any remaining provisions.

LGE may from time to time amend these Terms and Conditions and additional terms that may apply to your use of
this website, to the extent permitted under applicable laws and regulations.

Use of the LGE Service after the amended Terms of Use goes into effect will constitute your consent to such amend-
ment. You may revoke your consent to these Terms of Use by terminating your Account at any time, upon which you
will not be subject to the application of the amended Terms of Use.

5.20.6 Procedure for Resolving Dispute

Except to the extent prohibited by local law, any dispute arising out of or in connection with these Terms of Use,
including any question regarding its existence, validity or termination, shall be referred to and finally resolved by
arbitration (i) under the Rules of the Korean Commercial Arbitration Board (of which rules are deemed to be incor-
porated by reference into this clause), (ii) where the number of arbitrators shall be one, (iii) the seat, or legal place, of
arbitration shall be Seoul, Republic of Korea, (iv) the language to be used in the arbitral proceedings shall be English
and (v) the governing law of the contract shall be the substantive law of the Republic of Korea.

To the extent required by local law in order for the arbitration to be valid and legally effective as a means of dispute
resolution, including as against a consumer, reference to the Rules of the Korean Commercial Arbitration Board in (i)
above shall be deemed to refer to the rules of the most prominent arbitration body (the “Local Arbitration Rules”) in
your country, and reference to Seoul, Republic of Korea in (iii) above shall be deemed to refer to the capital city of
your country.

You may only resolve disputes with us on an individual basis, and not as a plaintiff or class member in any purported
class or representative proceedings.

If you have any questions about these terms of use, please contact us at developer @lge.com.

5.21 Cookie Policy

The connectsdk.com website (the “Site”) use cookies. You can find out more about cookies and how to control them
below.

404 Chapter 5. Promote Your TV App

mailto:developer@lge.com

connectSDK

By using the Sites, you accept the use of cookies in accordance with this cookie policy. If you do not accept the use of
these cookies, please disable them following the instructions in this cookie policy.

5.21.1 What is a cookie?

Cookies are text files containing small amounts of information which are downloaded to your computer or mobile
device when you visit a website. Cookies are then sent back to the originating website on each subsequent visit, or
to another website that recognizes that cookie. Cookies are useful because they allow a website to recognize a user’s
device.

Cookies do lots of different jobs, like letting you navigate between pages efficiently, remembering your preferences,
and generally improving the user experience. They can also help to ensure that adverts you see online are more relevant
to you and your interests.

For further information on cookies, including how to see what cookies have been set on your device and how to manage
and delete them, visit http://www.allaboutcookies.org/.

5.21.2 What cookies do we use on the Sites?

We use the following cookies.

Strictly necessary cookies. These are cookies that are required for the operation of our website. They include, for
example, cookies that enable you to log into secure areas of our website. These cookies do not gather information
about you that could be used for marketing or remembering where you have been on the internet. This category of
cookies cannot be disabled.

Analytical cookies. They allow us to recognize and count the number of visitors and to see how visitors move around
our website when they are using it. This helps us to improve the way our website works, for example, by ensuring that
users are finding what they are looking for easily. These cookies do not collect information that can identify you. All
the information that these cookies collect is anonymous and is only used to improve how the website works.

Our website uses Google Analytics cookies. Information collected by Google Analytics cookies will be transmitted
to and stored by Google on servers in the United States of America in accordance with its privacy practices. To see
an overview of privacy at Google and how this applies to Google Analytics, visit > http://www.google.co.uk/intl/en/
analytics/privacyoverview.html. You may opt out of tracking by Google Analytics by visiting > https://tools.google.
com/dlpage/gaoptout?hl+en-GB.

Advertising Cookies (Behavioral advertising). To personalize our Sites, deliver customized advertisements to you, or
contact you directly where you have separately consented to such communications, in a way which is relevant to you
and which matches your interests by, for example, using information about products you have browsed or ordered on
our website.

Functional cookies. These are used to recognize you when you return to our website. This enables us to personalize
our content for you and remember your preferences (for example, your choice of language or region). These cookies
do not collect information that can identify you. All the information that these cookies collect is anonymous and is
only used to improve how the website works.

You can find more information about the individual cookies we use and the purposes for which we use them in the
table below:

5.21. Cookie Policy 405

http://www.allaboutcookies.org/
http://www.google.co.uk/intl/en/analytics/privacyoverview.html
http://www.google.co.uk/intl/en/analytics/privacyoverview.html
https://tools.google.com/dlpage/gaoptout?hl+en-GB
https://tools.google.com/dlpage/gaoptout?hl+en-GB

connectSDK

Cookie
Type

Cookie Name

Source

Expiration

Purpose

Strictly
necessary

CookieScriptConsent

LG Elec-
tronics

2 years

This cookie is wused by Cookie-
Script.com service to remember visitor
cookie consent preferences. It is nec-
essary for Cookie-Script.com cookie
banner to work properly.

Analytics

-ga

LG Elec-
tronics

2 years

This cookie name is associated with
Google Analytics - which is a significant
update to Google’s more commonly used
analytics service. This cookie is used to
distinguish unique users by assigning a
randomly generated number as a client
identifier. It is included in each page re-
quest in a site and used to calculate vis-
itor, session and campaign data for the
sites analytics reports.

Analytics

_ga_L240ET5SMQS8

LG Elec-
tronics

2 years

This cookie name is associated with
Google Analytics - which is a significant
update to Google’s more commonly used
analytics service. This cookie is used to
distinguish unique users by assigning a
randomly generated number as a client
identifier. It is included in each page re-
quest in a site and used to calculate vis-
itor, session and campaign data for the
sites analytics reports.

Analytics

_gat_gtag UA_17997319_1

LG Elec-
tronics

1 minute

This cookie is part of Google Analytics
and is used to limit requests (throttle re-
quest rate).

Analytics

_gat_gtag UA_17997319_%

LG Elec-
tronics

1 minute

This cookie is part of Google Analytics
and is used to limit requests (throttle re-
quest rate).

Analytics

_gid

LG Elec-
tronics

1 day

This cookie is set by Google Analytics.
It stores and updates a unique value for
each page visited and is used to count and
track pageviews.

Adpvertising

VISITOR_INFO1_LIVE

Google
LLC
YouTube

6 months

This cookie is set by YouTube to keep
track of user preferences for YouTube
videos embedded in sites. It can also
determine whether the website visitor
is using the new or old version of the
YouTube interface.

Adpvertising

YSC

Google
LLC
YouTube

Session

This cookie is set by YouTube to track
views of embedded videos.

5.21.3 How to refuse, disable or delete cookies?

You can refuse certain types of cookies (except “strictly necessary cookies”) at any time by changing your settings on
Cookie Settings.

406

Chapter 5. Promote Your TV App

connectSDK

You may also disable cookies by activating the setting on your browser that allows you to refuse the setting of all or
some cookies. However, if you use your browser settings to disable all cookies (including strictly necessary cookies)
you may not be able to access all or parts of the Sites.

Disabling a cookie or category of cookie does not delete the cookie from your browser. You will need to do this
separately within your browser.

If you would like to make changes to your cookie settings, please go to the ‘Options’ or ‘Preferences’ menu of your
browser. Alternatively, go to the ‘Help’ option in your browser for more details.

To learn more about the cookie settings for your browser, please select the links below:
* Internet Explorer
* Firefox
e Chrome
* Android
* Safari
¢ i0S

If you have disabled one or more analytical cookies, we may still use information collected from cookies prior to your
disabled preference being set, however, we will stop using the disabled cookie to collect any further information.

5.22 Contact

¢ Developer Support: developer@lge.com

5.22. Contact 407

https://support.microsoft.com/en-us/windows/delete-and-manage-cookies-168dab11-0753-043d-7c16-ede5947fc64d
https://support.mozilla.org/en-US/kb/cookies-information-websites-store-on-your-computer?redirectlocale=en-US&redirectslug=Cookies
https://support.google.com/chrome/answer/95647?hl=en
https://support.google.com/chrome/answer/95647
https://support.apple.com/en-gb/guide/safari/sfri11471/mac
https://support.apple.com/en-gb/HT201265
mailto:developer@lge.com

	One SDK Eight Media Platforms
	Beam Web Apps to the Big Screen
	Beam Photos, Videos, Audio, and YouTube to the Big Screen
	Mirror Screen and Camera Preview to the Big Screen
	Promote Your TV App
	Connect SDK Overview
	Use Cases
	Supported features
	Beam Icon
	Sample Apps
	Testing & Debugging
	Download Connect SDK
	Getting Started
	Developer Guides
	API References
	Getting Started
	Developer Guides
	API References
	Getting Started
	Developer Guides
	API References
	TV Web Apps
	Release
	Article
	Terms and Conditions
	Cookie Policy
	Contact

